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Reading: 

Nise: 4.7, 4.8 • 

1 Pole/Zero Cancelation: 

Consider the following mechanical system: 

The transfer function relating vm	 to Vs is 

vm(s) B1s + K 
G(s) = = 

Vs(s) ms2 + (B1 + B2)s + K 

which is clearly second-order. However, if the parameter values are m1 = 1/3 kg, K = 2 
N/m, B1 = 1 N-s/m, B2 = 2/3 N-s/m the transfer function becomes 

s + 2 3(s + 2) 
G(s) =	 = 

(1/3)s2 + (5/3)s + 2 (s + 2)(s + 3) 

with a coincident pole and zero at s = −2. 
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s + 2 3
s   +  5 s  +  6

x ( t )V   ( t )  =  u   ( t ) v   ( t )ss m

Clearly, with these values, cancelation takes place in the transfer function and


3 
G(s) = 

s + 3 

This phenomenon is known as pole/zero cancelation. With these values the response will be 
identical to a first-order system with a pole at s = −3. 

Let’s compute the step response of this system to understand what has happened. We 
start by breaking the system into two cascaded blocks as we have discussed previously: 

When the input Vs(t) = us(t), the unit-step (Heaviside) function, the intermediate variable 
x(t) is 

dus(t) 
x(t) = + 2us(t) = δ(t) + 2us(t)

dt 
where δ(t) is the Dirac delta function. The system output vm(t) will therefore be 

vm(t) = yδ(t) + 2ys(t) 

where yδ(t) is the impulse response of the all-pole system to the right, and ys(t) is its step 
response. You can show for yourself that 

ys(t) = 0.5 − 1.5e−2t + e−3t 

yδ(t) = 3e−2t − 3e−3t 

so that 

vm(t) = yδ(t) + 2ys(t) = (3e−2t − 3e−3t) + 2(0.5 − 1.5e−2t + e−3t) 

= 1 − e−3t 

which is identical to the step response of the reduced system 

3 
G(s) = . 

s + 3 

Notice that the modal component e−2t has been canceled from the response. Although we 
have simply demonstrated the cancelation in this example, the following statement is true 
for all inputs: 

For any system in which one or more poles have been canceled by zeros in the 
transfer function, the modal components ept corresponding to the canceled poles 
will not appear in the output for any input u(t). 

We say that the canceled modes are not excited by the input. 

23–2 



2 The Effect of Zeros in the Proximity of a Pole 

The previous discussion considered only the complete cancelation of a pole. In many systems 
there may be zeros close to a pole but not coincident with it. Let’s address this issue by 
example again by considering the step response of a second-order system with two real poles 
and a single, this time in symbolic form: 

ab (s + c)
G(s) = 

c (s + a)(s + b) 

where the constant ab/c forces this to be a unity-gain system. 
The step-response for this system is: 

ys(t) = 1 − 
b(a − c) 

e−at + 
a(b − c) 

e−bt . 
c(a − b) c(a − b) 

Note that the amplitude of each of the modal components is determined by the distance from 
the pole to the zero, that is (a − c) for the component e−at, and (b − c) for the component 
e−bt, and although this is simply a demonstration The following result is true: 

As a zero approaches a pole, the amplitude of the modal component ept correspond
ing to the pole decreases, for any input u(t). 

This example also demonstrates the complete elimination of the component ept when the 
zero and pole are coincident. 

Example 1 

Compare the step responses of the system 

(12/c)(s + c)
G1(s) = 

(s + 3)(s + 4) 

for 

(i) c = 2.95 (ie, a zero close to the pole at s = −3). 

(ii) c = 3.50 (ie, a zero mid-way between the two poles). 

(iii) c = 2.95 (ie a zero close to the pole at s = −4). 

Substitution into the above gives the three step responses as 

c = 2.95: ys(t) = 1 + 0.068e−3t − 1.068e−4t 

c = 3.50: ys(t) = 1 − 0.571e−3t − 0.429e−4t 

c = 4.05: ys(t) = 1 − 1.007e−3t + 0.007e−4t 
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12
Step response of:

The effect on the amplitude of the component associated with the pole close to 
the zero is obvious. The three responses are plotted below: 

3 The Response of High-Order Systems 

The exact form of the response of third-order and higher systems is not easy to tabulate 
and summarize. For example, a third-order system may have three real poles, or two com
plex conjugate poles and a single real pole. The situation becomes even more complicated 
for fourth- and higher order systems. Nevertheless the same basic rules apply as we have 
developed for first- and second-order systems: 

•	 The total response to an input u(t) will consist of two fundamental components: the 
homogeneous response yh(t), and a particular solution yp(t) that is defined by u(t). 

•	 The homogeneous component will consist a set of a superposition of n modal compo
nents of the form ept associated with the system poles, that is 

n

pit yh(t) = 
� 

Cie
i=1 

where the constants Ci are later determined by the assumption that the system is at 
rest at t = 0. 
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•	 The particular solution is usually determined (if necessary) by the method of undeter
mine coefficients, in which it is assumed that yp(t) is similar in form to the input. The 
value of yp(t) is affected by the system zeros. 

The total solution is therefore • 
n

pit y(t) = 
� 

Cie + yp(t) 
i=1 

The pole-zero plot essentially tells us what the components of the response will be, but gives 
little information about the strength of the components, Never the less it is a very useful 
tool in control system design. 

4 Model Approximation – Dominant Poles: 

We have seen that the modal component of a real pole at s = σ is Ceσt, and the component 
due to a complex conjugate pole pair at s = σ ± jω is Ceσt cos(ωt + φ), and that the decay 
rate of the component is defined by the real part of the pole. Poles lying deep in the l.h. 
plane decay much faster than those close to the imaginary axis. 

Poles lying close to the imaginary axis are known as dominant poles because their response 
components persist for much longer that those deep within the l.h. plane. 

There is often the need to simplify a system model, for example to approximate a third-
order system by a second-order model. This can sometimes be done by retaining only the 
dominant pole pair - provided the third pole is sufficiently well separated from the dominant 
pair. 

Consider a system shown with transfer function 

50	 50 
G(s) =	 = 

s3 + 12s2 + 255s + 50 (s + 10)(s2 + 2s + 5) 
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which has poles at s = −10, −1 ± j2, as shown below:


By ignoring the pole at s = −10, and maintaining a unity-gain system we might assert 
5 

G(s) ≈ 
s2 + 2s + 5 

The following figure compares the step response of the two systems. 

It can be seen that the responses are similar. 

Note: There is a danger in using reduced-order models in closed-loop control system 
design. For example the use of a second-order approximation to a real third-order 
system will indicate that the system will never become unstable with proportional 
control. The physical system, however, will become unstable as the proportional 
gain is increased. 

For example, the system shown in the above example will be unstable under proportional 
control for Kp > 5, which cannot be predicted from the second-order approximation. 
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