MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II Spring Term 2008

Lecture 22^{1}

Reading:

- Nise: $4.1-4.8$

1 The Time-Domain Response of Systems with Finite Zeros

Consider a system:

$$
G s=\frac{K(s+b)}{s^{2}+2 s+5}
$$

we have seen that we can consider this as two cascade blocks

Then if the response of the a system $1 / D(s)$ is $v(t)$, then

$$
y(t)=\frac{d v}{d t}+b v(t)
$$

and as the zero (at $s=-b$) moves deeper into the l.h. s-plane,, the relative contribution of the derivative term decreases

and the system response tends toward a scaled version of the all pole response $v(t)$.
In general, the presence of the derivative terms in the response means that:

[^0]- The response is faster (shorter peak-time T_{P} and rise-time T_{R}).
- Greater overshoot in the response (if any). A zero may cause overshoot in the response of an over-damped second-order system.

■ Example 1

The following MATLAB step response compares the response for the underdamped system

$$
G(s)=\frac{5}{s^{2}+2 s+5}
$$

with similar unity-gain systems with zeros at $s=-1,-2,-3$:

$$
G(s)=\frac{5(s+1)}{s^{2}+2 s+5}, \quad G(s)=\frac{5 / 2(s+2)}{s^{2}+2 s+5}, \quad G(s)=\frac{5 / 3(s+3)}{s^{2}+2 s+5}
$$

Note the increase in the overshoot, and the decrease in T_{P} as the zero approaches the origin.

■ Example 2

The following MATLAB step response compares the response for the unity-gain overdamped system

$$
G(s)=\frac{12}{s^{2}+7 s+12}
$$

with two real poles at $s=-3$ and $s=-4$ with the similar system with a zeros at $s=-1$:

$$
G(s)=\frac{12(s+1)}{s^{2}+7 s+12}
$$

Note the overshoot caused by the zero, but that the overshoot is not oscillatory. Clearly the rise-time T_{R} is much shorter for the system with the zero.

2 The Time-Domain Response of Systems where the Order of the Numerator equals the Order of the Denominator

Consider systems of the form

$$
G(s)=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}
$$

where the degree of the numerator equals that of the denominator. In such systems it is possible to do polynomial division and write the transfer function as

$$
G(s)=\frac{N(s)}{D(s)}=K+\frac{N^{\prime}(s)}{D(s)}
$$

where $N^{\prime}(s)$ is a polynomial of degree less than that of $D(s)$.
For example, a system with transfer function

$$
G(s)=\frac{s+a}{s+b}
$$

may be written

$$
G(s)=1+\frac{b-a}{s+a}
$$

which may be represented in block-diagram form

showing a direct feed-through of the input into the output. In other words, when the order of the numerator is the same of the denominator the input will appear directly as a component of the output.

The step-response $y_{\text {step }}(t)$ of this system will therefore be

$$
y_{\text {step }}(t)=u_{s}(t)+\frac{b-a}{a}\left(1-e^{-a t}\right)
$$

where $u_{s}(t)$ is the unit-step (Heaviside) function.
Note:

- That $y_{\text {step }}\left(0^{+}\right)=1$, that is there is a step transient in the response (which does not occur if the order of $N(s)$ is less than that of $D(s))$.
- The steady-state step response $y_{s s}=b / a$, and if $b>a$ then $y_{s s}>1$, while if $a>b$ $y_{s s}<1$.

The following MATLAB plot shows the step responses for the two systems

$$
G(s)=\frac{s+6}{s+4} \quad(b>a), \quad \text { and } \quad G(s)=\frac{s+2}{s+4} \quad(a>b)
$$

with step responses

$$
y_{\text {step }}(t)=1+\frac{2}{4}\left(1-e^{-4 t}\right) \quad \text { and } \quad y_{\text {step }}(t)=1-\frac{2}{4}\left(1-e^{-4 t}\right)
$$

■ Example 3

Find the step response of the following electrical circuit:

The transfer function is

$$
G(s)=\frac{V_{o}(s)}{V(s)}=\frac{s+1 / R_{1} C}{s+\left(R_{1}+R_{2}\right) / R_{1} R_{2} C}
$$

and with the values shown

$$
G(s)=\frac{V_{o}(s)}{V(s)}=\frac{s+100}{s+150}=1-\frac{50}{s+150} .
$$

The step response is therefore

$$
y_{s t e p}=1-\frac{50}{150}\left(1-e^{-150 t}\right)=\frac{2}{3}+\frac{1}{3} e^{-150 t}
$$

which is plotted below:

■ Example 4

Find the step response of the following third-order system:

$$
\begin{aligned}
G(s) & =\frac{2 s^{3}+17 s^{2}+13 s+12}{s^{3}+7 s^{2}+6 s+5} \\
& =2+\frac{3 s^{2}+s+2}{s^{3}+7 s^{2}+6 s+5}
\end{aligned}
$$

showing a direct feed-through term of amplitude two. From Maple-Syrep, the step response is
$y_{\text {step }}(t)=2.4-0.5307 e^{-6.157 t}+0.1307 e^{-0.4213 t} \cos (0.7966 t)-0.2667 e^{-0.4213 t} \sin (0.7966 t)$
from which $y_{\text {step }}\left(o^{+}\right)=2$, and $y_{s s}=2.4$. The step response is plotted below.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

