MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture 21^{1}

Reading:

- Nise: Secs. $4.6-4.8$ (pp. 168-186)

1 Second-Order System Response Characteristics (contd.)

1.1 Percent Overshoot

The height of the first peak of the response, expressed as a percentage of the steady-state response.

$$
\% \mathrm{OS}=\frac{y_{p e a k}-y_{s s}}{y_{s s}} \times 100
$$

At the time of the peak $y\left(T_{p}\right)$

$$
y_{\text {peak }}=y\left(T_{p}\right)=1+e^{-\left(\zeta \pi / \sqrt{1-\zeta^{2}}\right)}
$$

and since $y_{s s}=1$

$$
\% \mathrm{OS}=e^{-\left(\zeta \pi / \sqrt{1-\zeta^{2}}\right)} \times 100
$$

Note that the percent overshoot depends only on ζ.
Conversely we can find ζ to give a specific percent overshoot from the above:

$$
\zeta=\frac{-\ln (\% \mathrm{OS} / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% \mathrm{OS} / 100)}}
$$

[^0]
■ Example 1

Find the damping ratio ζ that will generate a 5% overshoot in the step response of a second-order system.

Using the above formula

$$
\zeta=\frac{-\ln (\% \mathrm{OS} / 100)}{\sqrt{\pi^{2}+\ln ^{2}(\% \mathrm{OS} / 100)}}=\frac{-\ln (0.05)}{\sqrt{\pi^{2}+\ln ^{2}(0.05)}}=0.69
$$

■ Example 2

Find the location of the poles of a second-order system with a damping ratio $\zeta=0.707$, and find the corresponding overshoot.

The complex conjugate poles line on a pair of radial lines at an angle

$$
\theta=\cos ^{-1} 0.707=45^{\circ}
$$

from the negative real axis. The percentage overshoot is

$$
\begin{aligned}
\% \mathrm{OS} & =e^{-\left(\zeta \pi / \sqrt{1-\zeta^{2}}\right)} \times 100 \\
& =e^{-(0.707 \pi / \sqrt{1-0.5)}} \times 100 \\
& =4.3 \% \quad(\approx 5 \%)
\end{aligned}
$$

The value $\zeta=.707=\sqrt{2} / 2$ is a commonly used specification for system design and represents a compromise between overshoot and rise time.

1.2 Settling Time

The most common definition for the settling time T_{s} is the time for the step response $y_{\text {step }}(t)$ to reach and stay within 2% of the steady-state value $y_{s s}$. A conservative estimate can be found from the decay envelope, that is by finding the time for the envelope to decay to less than 2% of its initial value,

$$
\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}<0.02
$$

giving
or

$$
T_{s}=-\frac{\ln \left(0.02 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{n}}
$$

$$
T_{s} \approx \frac{4}{\zeta \omega_{n}} \quad \text { for } \quad \zeta^{2} \ll 1
$$

■ Example 3

Find (i) the pole locations for a system under feedback control that has a peak time $T_{p}=0.5 \mathrm{sec}$, and a 5% overshoot. Find the settling time T_{s} for this system.

From Example 2 we take the desired damping ratio $\zeta=0.707$. Then

$$
T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=0.5 \mathrm{~s}
$$

so that

$$
\omega_{n}=\frac{\pi}{T_{p} \sqrt{1-\zeta^{2}}}=\frac{\pi}{0.5 \sqrt{1-0.5}}=8.88 \mathrm{rad} / \mathrm{s} .
$$

The pole locations are shown below:

Then

$$
\begin{aligned}
p_{1}, p_{2} & =-8.88 \cos \left(\frac{\pi}{4}\right) \pm j 8.88 \sin \left(\frac{\pi}{4}\right) \\
& =-6.28 \pm j 6.28
\end{aligned}
$$

The indicated settling time T_{s} from the approximate formula is

$$
T_{s} \approx \frac{4}{\zeta \omega_{n}}=\frac{4}{0.707 \times 8.88}=0.64 \mathrm{~s} .
$$

Note that in this case ζ does not meet the criterion $\zeta^{2} \ll 1$ and the full expression

$$
T_{s}=-\frac{\ln \left(.02 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{n}}=-\frac{\ln (.02 \sqrt{1-0.5})}{0.5 \times 8.88}=0.68 \mathrm{~s}
$$

gives a slightly larger value.

2 Higher Order Systems

For systems with three or more poles, the system be analyzed as a parallel combination of first- and second-order blocks, where complex conjugate poles are combined into a single second-order block with real coefficients, using partial fractions. The total system output is then the superposition of the individual blocks.

■ Example 4

Express the system

$$
G(s)=\frac{5}{(s+1)\left(s^{2}+2 s+5\right)}
$$

as a parallel combination of first- and second-order blocks.

$$
\begin{aligned}
G(s) & =\frac{5}{(s+1)\left(s^{2}+2 s+5\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+2 s+5} \\
& =\frac{5}{4} \frac{1}{s+1}-\frac{5}{4} \frac{s+1}{s^{2}+2 s+5}
\end{aligned}
$$

using partial fractions. The system is described by the following block diagram

and the response to an input $u(t)$ may be found as the (signed) sum of the responses of the two blocks.

3 Some Fundamental Properties of Linear Systems

3.1 The Principle of Superposition

For a linear system at rest at time $t=0$, if the response to an input $u(t)=f(t)$ is $y_{f}(t)$, and the response to a second input $u(t)=g(t)$ is $y_{g}(t)$, then the response to an input that is a linear combination of $f(t)$ and $g(t)$, that is

$$
u(t)=a f(t)+b g(t)
$$

where a and b are constants is

$$
y(t)=a y_{f}(t)+b y_{g}(t)
$$

3.2 The Derivative Property

For a linear system at rest at time $t=0$, if the response to an input $u(t)=f(t)$ is $y_{f}(t)$, then the response to an input that is the derivative of $f(t)$, that is

$$
u(t)=\frac{d f}{d t}
$$

is

$$
y(t)=\frac{d y_{f}}{d t} .
$$

3.3 The Integral Property

For a linear system at rest at time $t=0$, if the response to an input $u(t)=f(t)$ is $y_{f}(t)$, then the response to an input that is the integral of $f(t)$, that is

$$
u(t)=\int_{0}^{t} f(t) d t
$$

is

$$
y(t)=\int_{0}^{t} y_{f}(t) d t
$$

■ Example 5

We can use the derivative and integral properties to find the impulse and ramp responses from the step response. We have seen

therefore

$$
\begin{aligned}
& y_{\delta}(t)=\frac{d}{d t} y_{\text {step }}(t) \\
& y_{r}(t)=\int_{0}^{t} y_{\text {step }}(t) d t
\end{aligned}
$$

For example, consider

$$
G(s)=\frac{b}{s+a}
$$

with step response

$$
y_{\text {step }}=\frac{b}{a}\left(1-e^{-a t}\right) .
$$

The impulse response is

$$
y_{\delta}(t)=\frac{d}{d t} y_{s t e p}(t)=b e^{-a t}
$$

and the ramp response is

$$
y_{r}(t)=\int_{0}^{t} y_{s t e p}(t) d t=\frac{b}{a}\left(t+\frac{1}{a}\left(1-e^{-a t}\right)\right)
$$

4 The Effect of Zeros on the System Response

Consider a system with a transfer function:

$$
G(s)=K \frac{N(s)}{D(s)}=K \frac{s^{m}+b_{m-1} s^{m-1}+\cdots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}}
$$

$N(s)$, which defines the system zeros, is associated with the RHS of the differential equation, while $D(s)$ is derived from the LHS of the differential equation. Therefore $N(s)$ does not affect the homogeneous response of the system.

We can draw $G(s)$ as cascaded blocks in two forms:

In this case we consider the all-pole system $1 / D(s)$ to be excited by $x(t)$, which is a superposition of the derivatives of $u(t)$

$$
x(t)=K \sum_{k=0}^{m} b_{k} \frac{d^{k} u}{d t^{k}}
$$

In this case we consider the all-pole system $1 / D(s)$ to be excited by $u(t)$ directly to generate $x(t)$, and the output is formed as a superposition of the derivatives of $v(t)$

$$
y(t)=K \sum_{k=0}^{m} b_{k} \frac{d^{k} v}{d t^{k}}
$$

Example 6

Find the step response of

$$
G(s)=\frac{s+10}{s^{2}+2 s+5}
$$

Splitting up the transfer function

$$
N(s)=s+10, \quad D(s)=\frac{1}{s^{2}+2 s+5}
$$

and $\omega_{n}=\sqrt{5}$, and $\zeta=1 / \sqrt{5}$.

Method 1: For the case,

if $u(t)=u_{s}(t)$, the unit-step function

$$
x(t)=\frac{d u}{d t}+10 u=\delta(t)+10 u_{s}(t)
$$

and for the all-pole system $1 / D(s)$

$$
\begin{aligned}
y_{\text {step }}(t) & =\frac{1}{5}\left(1-e^{-t} \cos (2 t)-e^{-t} \frac{1}{2} \sin (2 t)\right) \\
y_{\delta}(t) & =\frac{1}{2} e^{-t} \sin (2 t)
\end{aligned}
$$

For the complete system

$$
\begin{aligned}
y(t) & =y_{\delta}(t)+10 y_{\text {step }}(t) \\
& =2-2 e^{-t} \cos (2 t)-\frac{1}{2} e^{-t} \sin (2 t)
\end{aligned}
$$

Method 2: For the case,

from above the step-response to the all-pole system $1 / D(s)$ is

$$
v(t)=\frac{1}{5}\left(1-e^{-t} \cos (2 t)-\frac{1}{2} e^{-t} \sin (2 t)\right)
$$

and the system output is

$$
\begin{aligned}
y(t) & =\frac{d v}{d t}+10 v \\
& =\frac{1}{2} e^{-t} \sin (2 t)+\frac{10}{5}\left(1-e^{-t} \cos (2 t)-\frac{1}{2} \sin (2 t)\right) \\
& =2-2 e^{-t} \cos (2 t)-\frac{1}{2} e^{-t} \sin (2 t)
\end{aligned}
$$

which is the same as found in Method 1.

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

