MIT OpenCourseWare http://ocw.mit.edu

2.004 Dynamics and Control II Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

2.004 Dynamics and Control II Spring Term 2008

<u>Lecture 20¹</u>

Reading:

• Nise: Secs. 4.1 – 4.6 (pp. 153 - 177)

1 Standard Forms for First- and Second-Order Systems

These are (a) all pole system (with no zeros), and (b) have unity gain $(\lim_{t\to\infty} y_{step}(t) = 1)$.

1.1 First-Order System:

We define the first-order standard form as

$$G(s) = \frac{1}{\tau s + 1},$$

where the single parameter τ is the time constant. As a differential equation

$$\tau \frac{dy}{dt} + y = u(t).$$

and the system has a single real pole at $s = -1/\tau$.

¹copyright © D.Rowell 2008

The step response is

1.1.1 Common Step Response Descriptors:

(a) Settling Time: The time taken for the response to reach 98% of its final value. Since

$$y_{step}(t) = 1 - e - t/\tau$$

 $T_s = 4\tau$

and $e^{-4} = 0.0183 \approx 0.02$, we take

as the definition of T_s .

(b) Rise Time: Commonly taken as the time taken for the step response to rise from 10% to 90% of the steady-state response to a step input. It is found from the step response as follows

$$0.1 = 1 - e^{-t_{0.1}/\tau} \implies t_{0.1} = \tau \ln(0.9)$$

$$0.9 = 1 - e^{-t_{0.9}/\tau} \implies t_{0.9} = \tau \ln(0.1)$$

$$T_R = t_{0.9} - t_{0.1} = (\ln(0.1) - \ln(0.9))\tau = 2.2\tau$$

1.2 Second-Order Systems

The standard unity gain second-order system has a transfer function

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with two parameters (1) ω_n – the undamped natural frequency, and (ii) ζ – the damping ratio ($\zeta \ge 0$). The system poles are the roots of $s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$, that is

$$p_1, p_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1},$$

leading to four cases

- i) $\zeta > 1$ the poles are real and distinct $p_1, p_2 = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 1},$
- ii) $\zeta = 1$ the poles are real and coincident $p_1, p_2 = -\zeta \omega_n,$
- iii) $0 < \zeta < 1$ the poles are complex conjugates $p_1, p_2 = -\zeta \omega_n \pm j \omega_n \sqrt{1-\zeta^2}$, or
- (iv) $\zeta = 0$ the poles are purely imaginary $p_1, p_2 = \pm j\omega_n$.

1.2.1 Pole Positions For an Underdamped Second-Order System

$$p_1, p_2 = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$

and when plotted on the *s*-plane

we note that

- (a) The poles lie at a distance ω_n from the origin, and
- (b) The poles lie on radial lines at an angle

$$\theta = \cos^{-1}(\zeta)$$

as shown above.

The influence of ζ and ω_n on the pole locations may therefore be summarized:

1.2.2 Step Responses

(a) The over damped case $(\zeta > 1)$

$$y_{step}(t) = 1 - C_1 e^{-p_1 t} - C_2 e^{-p_2 t}$$

where the constants C_1 and C_2 are determined from p_1 and p_2 .

(b) The critically damped case $(\zeta = 1)$ With two coincident poles $p_1 = p_2 = p$, the step response takes a special form

$$y_{step}(t) = 1 - C_1 e^{pt} - C_2 t e^{-pt}$$

(c) The under damped case $(0 < \zeta < 1)$ With a pair of complex conjugate poles

$$p_1, p_2 = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$

the step response becomes oscillatory

$$y_{step}(t) = 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} \left(\cos\left(\omega_n \sqrt{1-\zeta^2}t - \phi\right) \right)$$

where

$$\phi = \tan^{-1} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \right)$$

and if we define the *damped natural frequency* ω_d as

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

we can write the step response as

$$y_{step}(t) = 1 - \frac{e^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} \left(\cos\left(\omega_d t - \phi\right)\right)$$

(d) The undamped case $(\zeta = 0)$ In this case

$$G(s) = \frac{\omega_n}{s^2 + \omega_n^2}$$

and the poles are $p_1, p_2 = \pm j\omega_n$. Then

Note: For any second-order system, the initial slope of the step response is zero, since by definition the system is at rest at time t = 0, that is $y_{step}(0) = 0$, and $\dot{y}_{step}(0) = 0$.

1.2.3 Step Response Based Second-Order System Specifications

(a) Rise Time (T_R) : Applies to over- and under-damped systems. As in the case of first-order systems, the usual definition is the time taken for the step response to rise from 10% to 90% of the final value:

For a second-order system there is no simple (general) expression for T_R . The following figure - from Nise, Fig. 4.16, (p. 172) is derived empirically:

(b) Peak Time (T_p) : Applies only to under-damped systems, and is defined as the time to reach the first peak of the oscillatory step response.

 T_p is found by differentiating the step response $y_{step}(t)$, and equating to zero. (See Nise p. 170 for details.)

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d}$$

** Transient response specifications continued in Lecture 21. **