MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

Department of Mechanical Engineering

2.004 Dynamics and Control II
 Spring Term 2008

Lecture 20^{1}

Reading:

- Nise: Secs. $4.1-4.6$ (pp. 153-177)

1 Standard Forms for First- and Second-Order Systems

These are (a) all pole system (with no zeros), and (b) have unity gain $\left(\lim _{t \rightarrow \infty} y_{\text {step }}(t)=1\right)$.

1.1 First-Order System:

We define the first-order standard form as

$$
G(s)=\frac{1}{\tau s+1},
$$

where the single parameter τ is the time constant. As a differential equation

$$
\tau \frac{d y}{d t}+y=u(t)
$$

and the system has a single real pole at $s=-1 / \tau$.

[^0]The step response is

$$
y_{\text {step }}=\mathcal{L}^{-1}\left\{\frac{1}{s} \frac{1 / \tau}{s+1 / \tau}\right\}=1-e^{-t / \tau}
$$

1.1.1 Common Step Response Descriptors:

(a) Settling Time: The time taken for the response to reach 98% of its final value. Since

$$
y_{\text {step }}(t)=1-e-t / \tau
$$

and $e^{-4}=0.0183 \approx 0.02$, we take

$$
T_{s}=4 \tau
$$

as the definition of T_{s}.
(b) Rise Time: Commonly taken as the time taken for the step response to rise from 10% to 90% of the steady-state response to a step input. It is found from the step response as follows

$$
\begin{gathered}
0.1=1-e^{-t_{0.1} / \tau} \Rightarrow t_{0.1}=\tau \ln (0.9) \\
0.9=1-e^{-t_{0.9} / \tau} \Rightarrow t_{0.9}=\tau \ln (0.1) \\
T_{R}=t_{0.9}-t_{0.1}=(\ln (0.1)-\ln (0.9)) \tau=2.2 \tau
\end{gathered}
$$

1.2 Second-Order Systems

The standard unity gain second-order system has a transfer function

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

with two parameters (1) ω_{n} - the undamped natural frequency, and (ii) ζ - the damping ratio $(\zeta \geq 0)$. The system poles are the roots of $s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0$, that is

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

leading to four cases
i) $\zeta>1$ - the poles are real and distinct

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}
$$

ii) $\zeta=1$ - the poles are real and coincident

$$
p_{1}, p_{2}=-\zeta \omega_{n}
$$

iii) $0<\zeta<1$ - the poles are complex conjugates

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}, \text { or }
$$

(iv) $\zeta=0$ - the poles are purely imaginary

$$
p_{1}, p_{2}= \pm j \omega_{n}
$$

1.2.1 Pole Positions For an Underdamped Second-Order System

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
$$

and when plotted on the s-plane

we note that
(a) The poles lie at a distance ω_{n} from the origin, and
(b) The poles lie on radial lines at an angle

$$
\theta=\cos ^{-1}(\zeta)
$$

as shown above.
The influence of ζ and ω_{n} on the pole locations may therefore be summarized:

lines of constant ζ

1.2.2 Step Responses

(a) The over damped case $(\zeta>1)$

$$
y_{\text {step }}(t)=1-C_{1} e^{-p_{1} t}-C_{2} e^{-p_{2} t}
$$

where the constants C_{1} and C_{2} are determined from p_{1} and p_{2}.

(b) The critically damped case $(\zeta=1) \quad$ With two coincident poles $p_{1}=p_{2}=p$, the step response takes a special form

$$
y_{s t e p}(t)=1-C_{1} e^{p t}-C_{2} t e^{-p t}
$$

(c) The under damped case $(0<\zeta<1)$ With a pair of complex conjugate poles

$$
p_{1}, p_{2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}
$$

the step response becomes oscillatory

$$
y_{\text {step }}(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}\left(\cos \left(\omega_{n} \sqrt{1-\zeta^{2}} t-\phi\right)\right)
$$

where

$$
\phi=\tan ^{-1}\left(\frac{\zeta}{\sqrt{1-\zeta^{2}}}\right)
$$

and if we define the damped natural frequency ω_{d} as

$$
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

we can write the step response as

$$
y_{\text {step }}(t)=1-\frac{e^{-\zeta \omega_{n} t}}{\sqrt{1-\zeta^{2}}}\left(\cos \left(\omega_{d} t-\phi\right)\right)
$$

(d) The undamped case $(\zeta=0)$ In this case

$$
G(s)=\frac{\omega_{n}}{s^{2}+\omega_{n}^{2}}
$$

and the poles are $p_{1}, p_{2}= \pm j \omega_{n}$. Then

$$
y_{\text {step }}(t)=1-\cos \left(\omega_{n} t\right)
$$

Note: For any second-order system, the initial slope of the step response is zero, since by definition the system is at rest at time $t=0$, that is $y_{\text {step }}(0)=0$, and $\dot{y}_{\text {step }}(0)=0$.

1.2.3 Step Response Based Second-Order System Specifications

(a) Rise Time (T_{R}): Applies to over- and under-damped systems. As in the case of first-order systems, the usual definition is the time taken for the step response to rise from 10% to 90% of the final value:

For a second-order system there is no simple (general) expression for T_{R}. The following figure - from Nise, Fig. 4.16, (p. 172) is derived empirically:

(b) Peak Time $\left(T_{p}\right)$: Applies only to under-damped systems, and is defined as the time to reach the first peak of the oscillatory step response.

T_{p} is found by differentiating the step response $y_{\text {step }}(t)$, and equating to zero. (See Nise p. 170 for details.)

$$
T_{p}=\frac{\pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=\frac{\pi}{\omega_{d}}
$$

[^0]: ${ }^{1}$ copyright © D.Rowell 2008

