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Reading: 

•	 Class Handout: Modeling Part 1: Energy and Power Flow in Linear Systems

Sec. 3.


• Class Handout: Modeling Part 2: Summary of One-Port Primitive Elements 

1	 The Modeling of Rotational Systems. 

With the the modeling framework as we defined it in Lecture 13, we have seen that in each 
energy domain we need to define 

(a)	 Two power variables, an across variable, and a through variable. the product of these 
variables is power. 

(b) Two ideal sources, and across variable source, and a through variable source. 

(c)	 Three ideal modeling elements, two energy storage elements (a T-type element, and a 
A-Type element), and a dissipative (D-Type) element.) 

(d) A pair of interconnection laws.


We now address modeling of rotational mechanical systems.


(a) Definition of Power variables:	 In a rotational system we consider the motion of a 
system around an axis of rotation: 

Consider the rotary motion resulting from a force F applied at a radius r from the 
rotational axis 
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The work done by the force F in moving an infinitesimal distance Δx is 

ΔW = F Δx = Frθ 

and the power P is 
dΔW dθ 

P = = F r = T Ω 
dt dt 

where T = Fr is the applied torque (N.m), and Ω = dθ/ dt is the angular velocity 
(rad/s). 

We note that if T and Ω have the same sign, then P > 0 and power is flowing into 
the system or element that is being rotated. Similarly, if T and Ω have the opposite 
signs, then P < 0 and power is flowing from the system or element, in other words the 
system is doing work on the source. 

Note that the angular velocity Ω can be different across an element, but that torque 
T is transmitted through an element: 

We therefore define our power variables as torque T and angular velocity Ω, where 
T is chosen as the through variable • 
Ω is chosen as the across variable. • 

(b) Ideal Sources: With the choice of modeling variables we can define our pair of ideal 
sources 

The Angular Velocity Source: Ωs(t) 
By definition the angular velocity source is an across variable source.The ideal angular 
velocity source will maintain the rotational speed regardless of the torque it must 
generate to do so: 
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The Torque Source: Ts(t)

By definition the torque source is a through variable source. The ideal torque source

will maintain the applied torque regardless of the angular velocity it must generate to

do so:


(c) Ideal Modeling Elements: 
1 The Moment of Inertia: Consider a mass element m rotating at a fixed radius 
R about the axis of rotation. 

The stored energy is 

1 1 
E = m(rΩ)2 = JΩ2 

2 2 

where J = mr2 is defined to be the mo
ment of inertia of the particle. 

For a collection of n mass particles mi at radii ri, i = 1, . . . , n, the moment of inertia 
is 

n

2J = 
� 

miri . 
i=1 
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For a continuous distribution of mass about the axis of rotation, the moment of inertia 
is 

J = 
� R 

r 2dm 
0 

Examples: 

A uniform rod of length L 
rotating about its center. 

A uniform disc with radius r 
rotating about its center. 

The elemental equation for the moment of inertia J is


dΩJ
TJ = J 

dt 

We note that the energy stored in a rotating mass is E = JΩ2/2, that is it is a function 
of the across variable, defining the moment of inertia as an A-type element. 

As in the case of a translational mass element, the angular velocity drop associated 
with a rotary inertia J is always measured with respect to a non-accelerating reference 
frame. 

Elemental Impedance: By definition 

ΩJ (s) 1 
ZJ = = 

TJ (s) Js 

from the elemental equation. 
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(2) The Torsional Spring: 
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Let θa and θb be the angular displacements of the two ends from their rest positions. 
Hooke’s law for a torsional spring is 

T = K(θa − θb). 

where K is defined to be the torsional stiffness. Differentiation gives 

dT d(θa − θb) 
= K 

dt dt 

dT 
= KΩ 

dt 

where Ω = (θ̇ 
a − θ̇ 

b) is the angular velocity drop across the spring.


Torsional stiffness may result from the material properties of a “long” shaft


or may be intentional, for example in a coil (“hair”) spring in a mechanical watch. 
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The energy stored in a torsional spring is 

t� 
1 

E = T Ω dt = T 2 

2K∞ 

which is a function of the through variable, defining the spring as a T-type element. 

Elemental Impedance: By definition 

ΩK (s) s 
ZK = = 

TK (s) K 

from the elemental equation. 

(3) The Rotational Damper: We look for an algebraic relationship between T and 
Ω of the form 

T = BΩ


which is approximated as viscous rotational friction: 

Notice that P = T Ω = BΩ2 > 0, which defines the damper as a D-type element. 

Elemental Impedance: By definition 

ΩB (s) 1 
ZB = = 

TB(s) B 

from the elemental equation. 

(d) Interconnection Laws:	 Consider an inertial element J subject to n external torques 
T1, T2, . . . , Tn, for example 
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then 
dΩ 

J = T1 − T 2 + T3 + T4
dt 

and in general 
n

dΩ 
Ti = J 

dt 
i=1 

As in the translational case, we consider a “fictitious” d’Alembert torque Tj and write 

n

Ti − TJ = 0 
� 

i=1 

as the torque balance (continuity condition) at a node. 

For an “inertia-less” node (J = 0), 

n

Ti = 0 
i=1 

which states that the external torques sum to zero, for example at node (a) below, 
TB − TK = 0. 
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Continuity Condition: The sum of torques (including a d’Alembert torque

associated with an inertia a element) at any node on a system graph is zero.


Nodes represent points of distinct angular velocity in a rotational system, and by 
analogy with translational systems, the compatibility condition is 

Compatibility Condition: The sum of angular velocity drops around any 
closed loop on a system graph is zero. 

For example, on the graph: 

two compatibility equations are: 

ΩK + ΩJ − Ωs = 0 (Loop 1), 

ΩB − ΩJ = 0 (Loop 2). 

2	 Updated Tables of Generalized Elements to Include Rotational 
Elements: 

The tables presented in Lecture 13 are now updated to include rotational systems. 

A-Type Elements: 

Element Elemental equation Energy 

Generalized A-type f = C 
dv 
dt 

E = 
1 
2 
Cv2 

Translational mass 

Rotational inertia 

Electrical capacitance 

F = m 
dv 
dt 

T = J 
dΩ 
dt 

i = C 
dv 
dt 

E 

E 

E 

= 

= 

= 

1 
2 
mv 2 

1 
2 
JΩ2 

1 
2 
Cv2 
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T-Type Elements :


Element Elemental equation Energy 

Generalized T-type v = Ldf/dt E = 
1 
2 
Lf2 

Translational spring 

Torsional spring 

Electrical inductance 

v = 
1 
K 

dF 
dt 

Ω = 
1 
K 

dT 
dt 

v = L 
di 
dt 

E = 
1 

2K 
F 2 

E = 
1 

2K 
T 2 

E = 
1 
2 
Li2 

D-Type Elements:


Element Elemental equations Power dissipated 

Generalized D-type f = 
1 
R 

v v = Rf P = 
1 
R 

v 2 = Rf2 

Translational damper 

Rotational damper 

Electrical resistance 

F = Bv 

T = BΩ 

i = 
1 
R 

v 

v = 
1 
B 

F 

ω = 
1 
B 

T 

v = Ri 

P = Bv2 = 
1 
B 

F 2 

P = BΩ2 = 
1 
B 

T 2 

P = 
1 
R 

v 2 = Ri2 

Generalized Impedances:


A-Type T-Type D-Type 

Generalized 
1 

Cs 
sL R 

Translational 
1 1 

s 
1 

sm K B 
1 1 1 

Rotational s 
sJ K B 
1 

Electrical 
Cs 

sL R 
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