MIT OpenCourseWare
http://ocw.mit.edu
2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
 Department of Mechanical Engineering
 2.004 Dynamics and Control II
 Spring Term 2008
 Solution of Problem Set 8

Assigned: April 11, 2008
Due: April 18, 2008
Problem 1: Nise Problem 7-1 (p. 357 5th Ed.).

Solution text removed due to copyright restrictions.

Problem 2: Nise Problem 7-15 (p. 358 5th Ed.).
Collapsing the inner loop and multiplying it by $\frac{1000}{s}$ yields the following equivalent forwardpath transfer function, corresponding to a type 1 system:

$$
G_{e}(s)=\frac{10^{5}(s+2)}{s\left(s^{2}+1005 s+2000\right)}
$$

```
MATLAB Command - line :
>> G1=feedback(tf(100*[1 2],[\begin{array}{lll}{1}&{5}&{0}\end{array}]),10)
Transfer function:
    100 s + 200
s^2 + 1005 s + 2000
>> G2=series(G1,tf(1000,[1 0]))
Transfer function:
    100000 s + 200000
s^3 + 1005 s^2 + 2000 s
```

Problem 3: Nise Problem 7-59 (p. 365 5th Ed.).

Solution text removed due to copyright restrictions.

Problem 4: Nise Problem 7-60 (p. 365 5th Ed.).

Solution text removed due to copyright restrictions.

Problem 5: Nise Problem 6-33 (p. 314 5th Ed.)

$$
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)}=\frac{K(s+4)}{s^{3}+3 s^{2}+(K+2) s+4 K}
$$

As a necessary condition for the stability, all the coefficients of the denominator should have the same sign which requires $(K+2)>0,(4 K)>0 \Rightarrow K>0$. Furthermore, we compute
marginal value of K by comparing the denominator with standard format of $(s+a)\left(s^{2}+\omega^{2}\right)=$ $s^{3}+a s^{2}+\omega^{2} s+a \omega^{2}$. By matching those two third order polynomials we realize that:

$$
\begin{gathered}
a=3 \\
a \omega^{2}=4 K \Rightarrow \omega^{2}=\frac{4 K}{3} \\
\omega^{2}=(K+2) \Rightarrow K=6 \Rightarrow \omega^{2}=8 \Rightarrow \omega=2 \sqrt{2} \frac{\mathrm{rad}}{\mathrm{sec}}
\end{gathered}
$$

Hence the range of $0<K<6$ keeps the system stable. The system has an undamped oscillation for $K=6$, corresponding to $\omega=2 \sqrt{2} \frac{\mathrm{rad}}{\mathrm{sec}}$.

Problem 6: Nise Problem 6-26 (p. 314 5th Ed.).

$$
\begin{gathered}
G(s)=\frac{K(s-2)(s+2)}{s^{2}+3}=\frac{K\left(s^{2}-4\right)}{s^{2}+3} \\
\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)}=\frac{K\left(s^{2}-4\right)}{(K+1) s^{2}+(3-4 K)}
\end{gathered}
$$

As a necessary condition for the stability, all the coefficients of the denominator should have the same sign which requires $(K+1)(3-4 K)>0 \Rightarrow-1<K>\frac{3}{4}$. However, for that range of K the system has only two purely oscillatory poles without any damping. Hence, the system is not truly stable, but only marginally stable.

