MIT OpenCourseWare http://ocw.mit.edu

2.004 Dynamics and Control II Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

2.004 Dynamics and Control II Spring Term 2008

Solution of Problem Set 6

Assigned: March 28, 2008

Due: April 4, 2008

Problem 1:

Note that for part a and c we have a zero-pole cancellation in LHP or origin. However, the MATLAB does not recognize this cancellation and we have to manually deal with it. The poles/zeros are extracted by *zpkdata* command and s-plane plot is obtained by *pzplot* command.

(a)

$$\frac{dy}{dt} + 3y = \frac{du}{dt} + 3u \Rightarrow G = \frac{s+3}{s+3} = 1$$

(b)

$$\frac{d^2y}{dt^2} + 7\frac{dy}{dt} + 12y = 2\frac{du}{dt} + u \Rightarrow G = \frac{2s+1}{s^2+7s+12} = 2\frac{(s+0.5)}{(s+3)(s+4)}$$

(c)

MATLAB Command – line :

>> [Z,P,K]=zpkdata(tf([1 3],[1 3])) % Part a Z = [-3] P = [-3] K = 1 >> [Z,P,K]=zpkdata(tf([2 1],[1 7 12])), P=P{:} % Part b Z = [-0.5000] P = [2x1 double] K = 2 P = -4 -3 >> [Z,P,K]=zpkdata(tf([1 0],[1 5 7 0])), P=P{:} % Part c Z =

[0]

P =

[3x1 double]

Problem 2:

(a) Having a steady-state value means that the system is stable. Consequently, no poles can be in RHP (right half plane). This condition is satisfied by all options. Furthermore, the steady-state unit step response is equal to G(0). If there is a zero at the origin then $G(0) = 0 \Rightarrow y_{ss} = 0$, which eliminates option c. Besides, if there is a pole at the origin then $G(0) = \frac{1}{0} = \infty \Rightarrow y_{ss} = \infty$ (y_{ss} is unbounded), which eliminates option b and d. Hence, the only feasible option is option a.

(b)

$$G(s) = K \frac{(s-1)}{(s-(-2))(s-(-5))} = K \frac{(s-1)}{(s+2)(s+5)}$$
$$y_{ss} = G(0) \Rightarrow 2 = K \frac{(0-1)}{(0+2)(0+5)} \Rightarrow K = -20 \Rightarrow G(s) = 20 \frac{1-s}{(s+2)(s+5)}$$

(c) Modal functions correspond to e^{-2t} and e^{-5t} :

$$G(s) = 20\left(\frac{1}{s+2} - \frac{2}{s+5}\right) \Rightarrow g(t) = 20(e^{-2t} - 2e^{-5t})$$

Problem 3:

(a) Since the system, G(s), has a zero at s = z, we can say that $G(s) = G_1(s)(s - z)$ such that $G_1(s)$ has no pole at s=z. The forced response can be computed from $Y(s) = G(s)U(s) = G(s)\frac{A}{s-z} = G_1(s)(s-z)\frac{A}{s-z} = AG_1(s)$. This means that Y(s) has no pole at s = z as well. Consequently particular solution (corresponding to a pole at s = z) is zero.

(b)

$$G(s) = G_1(s)(s-z_1)(s-z_2) = G_1(s)(s-(-\sigma+j\omega))(s-(-\sigma+j\omega)) = G_1(s)((s+\sigma)^2+\omega^2))$$

Again $G_1(s)$ has no pole corresponding to complex conjugate pair of $-\sigma \pm j\omega$.

$$u(t) = Ae^{-\sigma t} \sin(\omega t + \phi) = Ae^{-\sigma t} (\sin(\omega t) \cos(\phi) + \cos(\omega t) \sin(\phi))$$
$$U(s) = A\frac{\omega \cos(\phi) + (s + \sigma) \sin(\phi)}{(s + \sigma)^2 + \omega^2}$$
$$Y(s) = G(s)U(s) = AG_1(s)(\omega \cos(\phi) + (s + \sigma) \sin(\phi))$$

Consequently, Y(s) has no pole at complex conjugate pair of $-\sigma \pm j\omega$ as well. Hence the forced response is zero due to zero-pole cancellation.

Problem 4:

(a)

$$u(t) = e^{-bt} \Rightarrow U(s) = \frac{1}{s+b}$$

$$Y(s) = H(s)U(s) = \frac{a}{(s+a)(s+b)} = \frac{a}{a-b}(\frac{1}{s+b} - \frac{1}{s+a})$$

$$y(t) = \frac{a}{a-b}(e^{-bt} - e^{-at})$$

- (b) $H(s)|_{s=-a} = \frac{a}{0} = \infty$ and $Y(s)|_{s=-a} = \frac{a}{0 \times (b-a)} = \infty$. The particular solution is equal to $y_p(t) = \frac{a}{a-b}e^{-bt}$ and $\lim_{b \to a} y_p(t) = \infty$.
- (c) The overall system response is yet bounded when b = a. This can be computed by below limit from L'Hospital's rule for $\frac{0}{0}$ limit:

$$\lim_{b \to a} y(t) = \lim_{b \to a} \frac{a}{a-b} (e^{-bt} - e^{-at}) = a \lim_{b \to a} \frac{\frac{\partial (e^{-bt} - e^{-at})}{\partial b}}{\frac{\partial (a-b)}{\partial b}} = a \lim_{b \to a} \frac{-te^{-bt}}{-1} = ate^{-bt}$$

Problem 5:

(a)

$$G_p(s) = K \frac{1}{(s+2)(s+4)}$$

Unity Gain $\Rightarrow G(0) = 1 \Rightarrow K = 8 \Rightarrow G_p(s) = \frac{8}{(s+2)(s+4)} = \frac{8}{s^2 + 6s + 8}$

(b)

$$G_{cl}(s) = \frac{K_p G_p(s)}{1 + K_p G_p(s)} = \frac{8K_p}{s^2 + 6s + 8 + 8K_p} = \frac{8K_p}{s^2 + 6s + 8(1 + K_p)}$$

(c-d) The closed-loop poles for the values of $K_p = 0, 0.025, 0.05, 0.075, 1, 1, 25, 1, 2, 3, \dots, 10$ are plotted via attached code. Alternatively we could use *rlocus* command or *rltool* toolbox.

(e)

Critically Damped $\Rightarrow \varsigma = 1 \Rightarrow 6 = 2\omega_n \Rightarrow \omega_n = 3$ $\omega_n^2 = 8(1 + K_p) = 9 \Rightarrow K_p = \frac{1}{8} = 0.125$

MATLAB m – file :

clc, close all, clear P_cl=[]; plot([-2 -4],[0 0],'k+'),hold on for Kp=[0:.025:.125 1:10] [Z,P,K]=zpkdata(tf(8*Kp,[1 6 (1+Kp)*8])); P_cl(end+1,:)=P{:};

end

plot(real(P_cl(:,1)),imag(P_cl(:,1)),'r-*')

 $P_cl =$

		-2.0000		
		-2.1056		
		-2.2254		
		-2.3675		
		-2.5528		
+	0.0000i	-3.0000	-	0.0000i
+	2.6458i	-3.0000	-	2.6458i
+	3.8730i	-3.0000	-	3.8730i
+	4.7958i	-3.0000	-	4.7958i
+	5.5678i	-3.0000	-	5.5678i
+	6.2450i	-3.0000	-	6.2450i
+	6.8557i	-3.0000	-	6.8557i
+	7.4162i	-3.0000	-	7.4162i
+	7.9373i	-3.0000	-	7.9373i
+	8.4261i	-3.0000	-	8.4261i
+	8.8882i	-3.0000	-	8.8882i
	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ 0.0000i + 2.6458i + 3.8730i + 4.7958i + 5.5678i + 6.2450i + 6.8557i + 7.4162i + 7.9373i + 8.4261i + 8.8882i	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$