MIT OpenCourseWare
http://ocw.mit.edu

2.004 Dynamics and Control II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology

 Department of Mechanical Engineering

 Department of Mechanical Engineering
 2.004 Dynamics and Control II
 Spring Term 2008
 Solution of Problem Set 2

Assigned: Feb. 15, 2008
Due: Feb. 22, 2008
Problem 1:

(a) Assuming an ideal dc motor:

$$
\begin{gathered}
\text { Power }_{\text {in }}=\text { Power }_{\text {elect }}=v_{b} i_{m}=K_{v} \Omega_{m} i_{m} \\
\text { Power }_{\text {out }}=\text { Power }_{\text {mech }}=T_{m} \Omega_{m}=K_{m} i_{m} \Omega_{m} \\
\text { Power }_{\text {in }}=\text { Power }_{\text {out }} \Rightarrow K_{v} \Omega_{m} i_{m}=K_{m} i_{m} \Omega_{m} \Rightarrow K_{v}=K_{m}
\end{gathered}
$$

(b) Using the data sheet:

$$
\begin{gathered}
K_{m}=30.2 \frac{\mathrm{mNm}}{\mathrm{~A}}=30.2 \times 10^{-3} \frac{\mathrm{Nm}}{\mathrm{~A}} \\
K_{v}=\frac{1}{317 \frac{\mathrm{rpm}}{\mathrm{~V}}}=\frac{1}{317} \frac{V}{\mathrm{rpm}}=\frac{1}{317 \times \frac{2 \pi}{60}} \frac{\mathrm{~V}}{\frac{\mathrm{rad}}{\mathrm{~s}}}=30.1 \times 10^{-3} \frac{\mathrm{~V}}{\frac{\mathrm{rad}}{\mathrm{~s}}}
\end{gathered}
$$

Problem 2:

Using an approach similar to that we used in class (with the same basic mass/friction linear model):
(a)

$$
m \frac{d v}{d t}+B v=F_{p}(t)+F_{d}(t)
$$

Ignore F_{d}, assume $F_{p}(t)=K_{e} \phi(t)$ and employ $v=\frac{d x}{d t}$:

$$
\begin{gathered}
m \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}=K_{e} \phi(t) \\
\frac{X(s)}{\Phi(s)}=\frac{K_{e}}{m s^{2}+B s}
\end{gathered}
$$

(b-c)

(d)

$$
m \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}=K_{e} K_{p}\left(x_{p a r k}-x\right)
$$

In the steady state, $\frac{d x}{d t}=0$ hence:

$$
x_{s . s .}=x_{p a r k}
$$

(e)

Position Control: $m \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}=K_{e} K_{p}\left(x_{\text {park }}-x\right)$
Velocity Control: $m \frac{d v}{d t}+B v=K_{e} K_{p}\left(v_{\text {desired }}-v\right)$
In the position control $v_{\text {s.s. }}=0$, all the left terms of the equation are zero and a zero error can be held. On the other hand for the velocity control, $\left.\frac{d v}{d t}\right|_{s . s .}=a_{s . s .}=0$ but $v_{\text {s.s. }} \neq 0$, the drag force is not zero, and then $v_{\text {s.s. }} \neq v_{\text {desired }}$.

Problem 3: Nise, Chapter 5, Problem 4.
(1) Split G_{3} and combine it with G_{2} and G_{4}. Also use feedback formula on G_{6} loop:

(2) Push $G_{2}+G_{3}$ to the left past the pickoff point:

(3) Using the feedback formula and combining parallel blocks:

Figures by MIT OpenCourseWare.
(4) Multiplying the blocks of the forward path and applying the feedback formula:

$$
T(s)=\frac{G_{6} G_{4}+G_{6} G_{3}+G_{6} G_{5} G_{3}+G_{6} G_{5} G_{2}}{1+G_{6}+G_{3} G_{1}+G_{2} G_{1}+G_{7} G_{6} G_{4}+G_{7} G_{6} G_{3}+G_{6} G_{3} G_{1}+G_{6} G_{2} G_{1}+G_{7} G_{6} G_{5} G_{3}+G_{7} G_{6} G_{5} G_{2}}
$$

Problem 4:

$$
\begin{aligned}
Z_{o} & =R_{o} \| \frac{1}{C s}=\frac{R_{o} \frac{1}{C s}}{R_{o}+\frac{1}{C s}}=\frac{R_{o}}{R_{o} C s+1} \\
Z_{s} & =R+L s+Z_{o}=R+L s+\frac{R_{o}}{R_{o} C s+1}
\end{aligned}
$$

Voltage Division:

$$
\begin{aligned}
G(s) & =\frac{V_{o}}{V_{s}}=\frac{Z_{o}}{Z_{s}}=\frac{\frac{R_{o}}{R_{o} C s+1}}{R+L s+\frac{R_{o}}{R_{o} C s+1}} \\
& =\frac{R_{o}}{L R_{o} C s^{2}+\left(L+R R_{o} C\right) s+\left(R+R_{o}\right)}
\end{aligned}
$$

Problem 5: Input impedance does not characterize a system uniquely. In other words, systems with different characteristics, like below examples, can have the same input impedance.

(a)

(b)
(a)

$$
\begin{aligned}
Z_{a} & =R+L s+2 R \|(L s+2 R) \\
& =R+L s+\frac{2 R(L s+2 R)}{2 R+(L s+2 R)} \\
& =R+L s+\frac{2 R L s+4 R^{2}}{4 R+L s} \\
& =R+L s+\frac{0.5 R L s+R^{2}}{R+0.25 L s}
\end{aligned}
$$

(b)

$$
\begin{aligned}
Z_{b} & =2 R+L s+R \|(0.25 L s) \\
& =2 R+L s+\frac{R(0.25 L s)}{R+0.25 L s} \\
& =R+L s+R+\frac{R(0.25 L s)}{R+0.25 L s} \\
& =R+L s+\frac{0.5 R L s+R^{2}}{R+0.25 L s} \\
& =Z_{a}
\end{aligned}
$$

