2.003SC

Recitation 8 Notes: Cart and Pendulum (Lagrange)

Cart and Pendulum - Problem Statement

A cart and pendulum, shown below, consists of a cart of mass, m_{1}, moving on a horizontal surface, acted upon by a spring with spring constant k. From the cart is suspended a pendulum consisting of a uniform rod of length, l, and mass, m_{2}, pivoting about point A.

Derive the equations of motion for this system by Lagrange. Specifically,

- Find T, the system's kinetic energy
- Find V, the system's potential energy
- Find $v_{G}{ }^{2}$, the square of the magnitude of the pendulum's center of gravity

Cart and Pendulum - Solution

Generalized Coordinates $\quad q_{1}=x, \quad q_{2}=\theta$

Kinematics

The linear velocity of the pendulum's center of mass, v_{G}, is given by

$$
v_{G}=\dot{x} \hat{I}+\frac{l \dot{\theta}}{2} \hat{j}=\left(\dot{x}+\frac{l \dot{\theta}}{2} \cos \theta\right) \hat{I}+\left(\frac{l \dot{\theta}}{2} \sin \theta\right) \hat{J}
$$

The square of its magnitude is given by

$$
v_{G}^{2}=\left(\dot{x}+\frac{l \dot{\theta}}{2} \cos \theta\right)^{2}+\left(\frac{l \dot{\theta}}{2} \sin \theta\right)^{2}
$$

Expanding and simplifying,

$$
\begin{gathered}
v_{G}^{2}=\dot{x}^{2}+2 \frac{l \dot{x} \dot{\theta}}{2} \cos \theta+\left(\frac{l \dot{\theta}}{2}\right)^{2} \cos ^{2} \theta+\left(\frac{l \dot{\theta}}{2}\right)^{2} \sin ^{2} \theta \\
v_{G}^{2}=\dot{x}^{2}+\dot{x} \dot{\theta} l \cos \theta+\frac{l^{2} \dot{\theta}^{2}}{4}
\end{gathered}
$$

Kinetic Energy

$$
\begin{gathered}
T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2} v_{G}{ }^{2}+\frac{1}{2} I_{G} \dot{\theta}^{2} \\
T=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}+\dot{x} \dot{\theta} l \cos \theta+\frac{l^{2} \dot{\theta}^{2}}{4}\right)+\frac{1}{2}\left(\frac{m l^{2}}{12}\right) \dot{\theta}^{2}
\end{gathered}
$$

Potential Energy

$$
V=\frac{1}{2} k x^{2}+m_{2} g \frac{l}{2}(1-\cos \theta)
$$

Lagrangian

$$
\begin{gathered}
\mathcal{L}=T-V \\
\mathcal{L}=\frac{1}{2} m_{1} \dot{x}^{2}+\frac{1}{2} m_{2}\left(\dot{x}^{2}+\dot{x} \dot{\theta} l \cos \theta+\frac{l^{2} \dot{\theta}^{2}}{4}\right)+\frac{1}{2}\left(\frac{m l^{2}}{12}\right) \dot{\theta}^{2}-\frac{1}{2} k x^{2}-m_{2} g \frac{l}{2}(1-\cos \theta)
\end{gathered}
$$

Lagrange's equation for the first generalized coordinate,

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{x}}\right)-\frac{\partial \mathcal{L}}{\partial x}=Q_{x}
$$

yields the first equation of motion.

$$
\begin{equation*}
\left(m_{1}+m_{2}\right) \ddot{x}+\frac{m_{2} l}{2} \ddot{\theta} \cos \theta-\frac{m_{2} l}{2} \dot{\theta}^{2} \sin \theta+k x=0 \tag{1}
\end{equation*}
$$

Lagrange's equation for the second generalized coordinate,

$$
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}}\right)-\frac{\partial \mathcal{L}}{\partial \theta}=Q_{\theta}
$$

yields the second equation of motion.

$$
\begin{equation*}
\left(\frac{m_{2} l^{2}}{4}+\frac{m_{2} l^{2}}{12}\right) \ddot{\theta}+\frac{m_{2} l}{2} \ddot{x} \cos \theta+m_{2} g \frac{l}{2} \sin \theta=0 \tag{2}
\end{equation*}
$$

Cart and Pendulum - Problem Statement

Assume that the cart and pendulum system now contain a damper/dashpot of constant between the cart and ground, as well as an external force, $F(t)$, applied to the cart.

Derive the equations of motion for this system by Lagrange. Specifically, show the generalized forces.

Cart and Pendulum - Solution

Both the damper and the external force are non-conservative (forces). Consequently, they enter the Lagrange formulation as generalized forces.

Generalized Forces

$$
\begin{gathered}
\delta \mathcal{W}^{n c}=\sum_{i}^{N} \mathbf{f}_{i}^{n c} \cdot \delta \mathbf{R}_{i}=\sum_{j=1}^{n} \mathbf{Q}_{j} \delta \xi_{j} \\
\delta \mathcal{W}^{n c}=[-b \dot{x}+F(t)] \delta x+[0] \delta \theta \\
Q_{x}=-b \dot{x}+F(t) \quad Q_{\theta}=0
\end{gathered}
$$

which changes the first equation to become,

$$
\left(m_{1}+m_{2}\right) \ddot{x}+\frac{m_{2} l}{2} \ddot{\theta} \cos \theta-\frac{m_{2} l}{2} \dot{\theta}^{2} \sin \theta+k x=-b \dot{x}+F(t)
$$

So our equations of motion become

$$
\begin{equation*}
\left(m_{1}+m_{2}\right) \ddot{x}+\frac{m_{2} l}{2} \ddot{\theta} \cos \theta-\frac{m_{2} l}{2} \dot{\theta}^{2} \sin \theta+b \dot{x}+k x=F(t) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{m_{2} l^{2}}{4}+\frac{m_{2} l^{2}}{12}\right) \ddot{\theta}+\frac{m_{2} l}{2} \ddot{x} \cos \theta+m_{2} g \frac{l}{2} \sin \theta=0 \tag{4}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.003SC / 1.053J Engineering Dynamics

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

