

Massachusetts Institute of Technology

Department of Ocean Engineering
Department of Civil and Environmental Engineering

13.013J/1.053J Dynamics and Vibration

Fall 2002

Quiz I

- "Closed book and notes", one sheet of formulas allowed.
- Individual effort.
- Read all problems first.
- This quiz contains 6 printed pages.

Figure for Problem 1:

Problem 1:

A pendulum of mass M with a massless rigid rod of length L hanging from a fixed frictionless pin O is initially at rest in a field with acceleration due to gravity g. The mass M can be considered as a point mass (particle with negligible dimensions). A particle of mass m and horizontal velocity v flying at a vertical distance d from the pin collides with the pendulum rod and sticks to it.
a) a i. Explain why kinetic energy and linear momentum are not in general conserved during the collision.
a ii. Determine the angular velocity and kinetic energy of the system immediately after the collision, and the kinetic energy loss during the collision, as a fraction of the initial kinetic energy of the mass m.
a iii. Determine the impulse from the pin O on the rod during the time of the collision.
Hint: Impulse is the integral of the force $\overrightarrow{F(t)}$ over the time of collision $\vec{J}=\int_{0-}^{0+} \overrightarrow{F(t)} d t$, assuming the time interval of collision is very small.

$$
(2+10+5=17 \text { Points })
$$

b) Determine the second order (nonlinear) ordinary differential equation of motion of the system after the collision. The motion can be described in terms of the angle $\theta(t)$ the rod makes with the vertical line through O.
c) ci. Determine the maximum angle $\theta_{\text {max }}$ the pendulum will make with the vertical after the collision.
c ii. Determine under what condition for the initial speed v will the maximum angle of the pendulum after collision be equal to π radians.

$$
\text { (5 + } 3 \text { = } 8 \text { Points) }
$$

d) Determine an expression for the force from the rod on the pin after the collision as a function of $\theta(t)$.

Hint: Eliminate any dependence on $\dot{\theta}(t)$ and leave only the dependence on $\theta(t)$ using an appropriate conservation law valid after the collision.
(10 Points)
e) Determine an integral expression for the time that will elapse between the collision and the maximum angle $\theta_{\max }$ of question (ci).

Hint: Using an appropriate conservation law valid after the collision (just as in question d), express $\frac{d \theta}{d t}=f(\theta)$, where $f(\theta)$ is a function of θ.

Figure for Problem 2:

Figure for Problem 2c, 2d:

Problem 2:

A ship is traveling at a constant velocity $V_{\text {mean }}$ with respect to the earth, along the axis $O X$, where $O X Y Z$ is an inertial system (with unit vectors $\vec{I}, \vec{J}, \vec{K}$) attached to the earth. A moving system $G x y z$ (with unit vectors $\vec{i}, \vec{j}, \vec{k}$) is attached to the ship at its center of gravity G, so that the axis Gx makes an angle $\theta(t)$ to the horizontal axis OX. Due to head seas (a storm with waves whose crests are parallel to OY axis and propagating along $O X$ axis) the ship oscillates in the vertical plane heaving and surging, and rotates about an axis orthogonal to its center plane (ie. pitching). The velocity of G with respect to the inertial frame is

$$
\overrightarrow{V_{G}}=V_{\text {mean }} \vec{I}+u(t) \vec{i}+w(t) \vec{k}
$$

where $u(t)$ and $w(t)$ are the surge and heave velocities of the ship. The angular velocity of the ship with respect to $O X Y Z$ is $\vec{\omega}=\omega_{2}(t) \vec{J}$, where $\omega_{2}(t)=\dot{\theta}(t)$, also known as pitch angular velocity.

At the same time the ship's propeller of radius R is rotating with its shaft at a constant angular velocity Ω with respect to the ship, ie.

$$
\vec{\omega}_{\text {propeller,ship }}=\Omega \vec{i}
$$

a) Determine the inertial velocity $\overrightarrow{\mathrm{v}_{\mathrm{p}}}$ and acceleration $\overrightarrow{\mathrm{a}_{\mathrm{p}}}$ of the center of the propeller, P using the ship fixed system Gxyz for your calculations. For simplicity of algebra express $\overrightarrow{v_{p}}=V_{\text {mean }} \vec{I}+\alpha \vec{i}+\beta \vec{k}$ and $\overrightarrow{a_{p}}=\vec{i}+\delta \vec{k}$, and determine α, β, γ and δ.
(15 Points)
b) Determine the angular velocity of the propeller with respect to $O X Y Z$ and its time rate of change with respect to $O X Y Z$.
(5 Points)
c) The line $P T$ makes an angle $\phi(t)$ with the Y direction (same as direction y_{1}) and assume, for simplicity that the line $P T$ is on a plane $\mathrm{Py}_{1} z_{1}$ parallel to the plane $G y z$. Note that $\dot{\phi}(t)=\Omega$. Find the inertial velocity $\overrightarrow{v_{T}}$ and the acceleration $\overrightarrow{a_{T}}$ of the tip T for an arbitary $\phi(t)$ and in particular when $\phi=\frac{3 \pi}{2}$, ie. when the tip T is at the lowest point.
Hint: Use a system $P x_{1} y_{1} z_{1}$ fixed to the ship with origin at the propeller center P and with the axes parallel to Gxyz, respectively.
(20 Points)
d) Imagine that a mussel of mass m happens to be attached to the tip T, of the propeller. For the condition of question (c) and $\phi=\frac{3 \pi}{2}$ find the contact force from the blade on the mussel assuming the (static and dynamic) fluid force on the mussel is known and equal to $\overrightarrow{F_{f}(t)}$. Note that the acceleration of gravity is g. Assume that the propeller does not emerge from the ocean surface during the oscillations of the ship.
(10 Points)

