MatLab Programming - Algorithms to Solve Differential Equations

Adapted from Figure 16.1.2. In Numerical Recipes in C: The Art of Scientific Computing. 2nd Ed. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Cambridge, UK: Cambridge University Press, 1992. p. 711. ISBN: 9780521431088. Figure by MIT OCW.

Revisit the task of recovering the motion of a dynamical system from its equation of motion

Consider the simplest $1^{\text {st }}$ order system:

$$
b \dot{x}+k x=0
$$

What does this system corresponds to?

The solution of this system can of course be obtained analytically but also simply numerically by a single integration

Limitation of Simple Integration: Quad

Simple integration is very limited and does not solve a large class of dynamic problems. As examples:

Falling ball $2^{\text {nd }}$ order

Coupled multiple degree of freedom system

How did we solve this class of problems? We use a very simple straight forward approach of doing numerical integration:

$$
x=0 ; y=0 ; v x=5 ; v y=5 ; t=0 ; d t=0.1
$$

$=v x^{*} d t ; y=v y * d t ; v y=v y-9.8^{\star} d t ; t=t+d t ;$

Actually, this simple approach Has a name - it is called Euler Method

The General Numerical Problem of Solving Ordinary Differential Equations (ODEs)

$$
y^{(n)}=f\left(y^{(n-1)}, \cdots, y^{\prime}, y, t\right)
$$

Note that y does not have to be a scaler but can be a vector as in the case for multiple degrees of freedom systems

$$
y=\left(y_{1}, y_{2}, \cdots y_{m}\right)
$$

Converting higher order differential equation to a system of first order differential equation

Consider probably the most important case:

$$
y^{\prime \prime}=f(t) y^{\prime}+g(t) y+h(t)
$$

This can be readily converted to a system of first order differential equations

$$
\begin{aligned}
& y_{2}=y^{\prime} \quad y_{1}=y \\
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=f(t) y_{2}+g(t) y_{1}+h(t)
\end{aligned}
$$

General equivalence between higher order differential equation and a system of first order equations

$$
\begin{aligned}
& y^{(n)}=f\left(y^{(n-1)}, \cdots, y^{\prime}, y, t\right) \\
& y_{1}=y ; y_{2}=y^{\prime} ; \cdots, y_{n-1}=y^{(n-2)} ; y_{n}=y^{(n-1)} \\
& y_{n}^{\prime}=f\left(y_{n}, \cdots, y_{2}, y_{1}, t\right)
\end{aligned}
$$

Solving linear first order differential equation by Euler Method
In general, the system of equations look like:

$$
y_{i}^{\prime}(t)=f_{i}\left(y_{1}, y_{2}, \cdots, y_{n}, t\right) \quad i=1 \cdots n
$$

Euler Method says:

$$
\begin{aligned}
& y_{i}(j \Delta t)=y_{i}((j-1) \Delta t)+f_{i}\left(y_{1}((j-1) \Delta t), \cdots, y_{n}((j-1) \Delta t),(j-1) \Delta t\right) \Delta t \\
& \quad i=1 \cdots n
\end{aligned}
$$

This equation can be solved if we have the initial conditions:

$$
y_{1}(0)=y_{10}, y_{2}(0)=y_{20}, \cdots, y_{n}(0)=y_{n 0}
$$

What is the accuracy of the Euler Method?

Euler method is equivalent to taking the $1^{\text {st }}$ order Taylor series expansion for $y_{i}(\mathrm{t})$; it is unsymmetric and uses only the derivative information at the start of the time step

$$
\begin{aligned}
& y_{i}(j \Delta t)=y_{i}((j-1) \Delta t)+f_{i}\left(y_{1}((j-1) \Delta t), \cdots, y_{n}((j-1) \Delta t),(j-1) \Delta t\right) \Delta t+O\left(\Delta t^{2}\right) \\
& \quad i=1 \cdots n
\end{aligned}
$$

Correction is only one less order then the correction term. How do we get better accuracy?

Schematically, the differences between Euler and $2^{\text {nd }}$ order Runge-Kutta are fairly clear

Euler Method

Adapted from Figure 16.1.1. In Numerical Recipes in C: The Art of Scientific Computing.
2nd Ed. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Cambridge, UK: Cambridge
University Press, 1992. p. 711. ISBN: 9780521431088. Figure by MIT OCW.

$2^{\text {nd }}$ order Runge-Kutta

Adapted from Figure 16.1.1. In Numerical Recipes in C: The Art of Scientific Computing.
2nd Ed. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. Cambridge, UK: Cambridge University Press, 1992. p. 711. ISBN: 9780521431088. Figure by MIT OCW.

A working ODE solver - Runge-Kutta Method

Estimate where the mid-point for y_{i} is first. Then, Evaluate the slope at the mid-point to estimate the next value of y_{i}.

$$
\begin{aligned}
& k 1_{i}=f_{i}\left(y_{1}((j-1) \Delta t), \cdots, y_{n}((j-1) \Delta t),(j-1) \Delta t\right) \Delta t \\
& k 2_{i}=f_{i}\left(y_{1}((j-1) \Delta t)+k 1_{1} / 2, \cdots, y_{n}\left((j-1) \Delta t+k 1_{n} / 2\right),(j-1 / 2) \Delta t\right) \Delta t \\
& y_{i}(j \Delta t)=y_{i}((j-1) \Delta t)+k 2_{i} \\
& \quad i=1 \cdots n
\end{aligned}
$$

Because of symmetry, this method is good to $O\left(\Delta t^{3}\right)$

This is called the $2^{\text {nd }}$ order Runge-Kutta method.

Higher Order Runge-Kutta Method

Just like Simpson method can be extended to higher order estimate, Runge-Kutta also has straightforward Higher order analog. The most commonly used one is the $4^{\text {th }}$ order Runge-Kutta method

$$
\begin{aligned}
& k 1_{i}=f_{i}\left(y_{1}((j-1) \Delta t), \cdots, y_{n}((j-1) \Delta t),(j-1) \Delta t\right) \Delta t \\
& k 2_{i}=f_{i}\left(y_{1}((j-1) \Delta t)+k 1_{1} / 2, \cdots, y_{n}\left((j-1) \Delta t+k 1_{n} / 2\right),(j-1 / 2) \Delta t\right) \Delta t \\
& k 3_{i}=f_{i}\left(y_{1}((j-1) \Delta t)+k 2_{1} / 2, \cdots, y_{n}\left((j-1) \Delta t+k 2_{n} / 2\right),(j-1 / 2) \Delta t\right) \Delta t \\
& k 4_{i}=f_{i}\left(y_{1}((j-1) \Delta t)+k 3_{1} \cdots, y_{n}\left((j-1) \Delta t+k 3_{n}\right), j \Delta t\right) \Delta t \\
& y_{i}(j \Delta t)=y_{i}((j-1) \Delta t)+k 1_{i} / 6+k 2_{i} / 3+k 3_{i} / 3+k 4_{i} / 6+O\left(\Delta t^{5}\right) \\
& \quad i=1 \cdots n
\end{aligned}
$$

Using MatLab to solve a system of differential equations

Consider solving the following system of ODE:

$$
\begin{array}{ll}
y_{1}^{\prime}=y_{2} y_{3} & y_{1}(0)=0 \\
y_{2}^{\prime}=-y_{1} y_{3} & y_{2}(0)=1 \\
y_{3}^{\prime}=-0.51 y_{1} y_{2} & y_{3}(0)=1
\end{array}
$$

Adapted from MATLAB Help Sections. Figure by MIT OCW.

Using MatLab to solve a system of differential equations

(1) First define the system of ODEs as a function:
function dy = system(t,y)
dy = zeros(3,1); \% a column vector
$d y(1)=y(2)$ * $y(3)$;
$d y(2)=-y(1) * y(3) ;$
$d y(3)=-0.51$ * $y(1) * y(2)$;
(2) Call ODE45 or ODE23 using the function handle
[T,Y] = ode45(@system,[0 12],[0 1 1]);
(3) Plot result
plot(T,Y(:,1),'-', T, Y(:,2),'-.', T,Y(:,3),'.')
Cite as: Peter So, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007.
MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

