Lecture 24

Vibrations: Forced Response of Multi-Degree-of-Freedom Systems

Forced Response of Multi-Degree-of-Freedom Systems

Figure 1: Two carts connected by two springs. Motion only in the x direction. Generalized coordinates x_{1} and x_{2}. Figure by MIT OCW.

$\underline{\text { Equations of Motion }}$

$$
\begin{gathered}
m_{1} \ddot{x}_{1}+k_{1} x_{1}-k_{2}\left(x_{2}-x_{1}\right)=F_{1}(t) \\
m_{2} \ddot{x}_{2}+k_{2}\left(x_{2}-x_{1}\right)=0
\end{gathered}
$$

Rewrite in matrix form.

$$
\left[\begin{array}{cc}
m_{1} & 0 \tag{1}\\
0 & m_{2}
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right\}+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
F_{1}(t) \\
0
\end{array}\right\}
$$

Let:

$$
F_{1}(t)=F_{0} \cos \omega t
$$

What is the response?

General Form of Solution

2 natural frequencies. 2 modes of oscillation.

$$
\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\underbrace{A_{1}\{c\}_{1} \cos \left(\omega_{1} t-\phi_{1}\right)+A_{2}\{c\}_{2} \cos \left(\omega_{2} t-\phi_{2}\right)}_{\text {Free Response }}+\underbrace{\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}_{p} \cos (\omega t-\phi)}_{\text {Forced Response }}
$$

$\left\{c_{1}\right\}$ and $\left\{c_{2}\right\}$ are vectors describing the modes shapes for the free response. ω_{1} and ω_{2} are the two natural frequencies of oscillation.
Constants A_{1}, A_{2}, ϕ_{1}, and ϕ_{2} are set by the initial conditions.
For more information on free response, see lectures 21,22 , and 23 .
For the particular solution, we will restrict the guess further.

$$
\left\{\begin{array}{l}
x_{1} \tag{2}\\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\} \cos \omega t
$$

This guess assumes phase change of 0 or π. Acceptable, because the system has no damping. Justify with a 1-D example.

$$
m \ddot{x}+c \dot{x}+k x=F_{0} \cos \omega t
$$

We use:

$$
x=\operatorname{Re}\left\{\mathbb{X} e^{(i \omega t)}\right\}=|\mathbb{X}| \cos (\omega t-\phi)
$$

This allows $0<\phi<\pi$ because $c \dot{x}$ term however, in the case $m \ddot{x}+k x=F_{0} \cos \omega t$, one is restricted to guessing $x=\mathbb{X} \cos \omega t$.

$\underline{\text { Derivations of Equations for Particular Solution }}$

Substitute Equation (2) into Equation (1).

$$
\begin{gathered}
\left(-\omega^{2}\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]+\left[\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}
\end{array}\right]\right)\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\left[\begin{array}{c}
F_{0} \\
0
\end{array}\right] \\
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\left[\begin{array}{cc}
k_{1}+k_{2}-m_{1} \omega^{2} & -k_{2} \\
-k_{2} & k_{2}-m_{2} \omega^{2}
\end{array}\right]^{-1}\left\{\begin{array}{c}
F_{0} \\
0
\end{array}\right\}
\end{gathered}
$$

For:

$$
\underline{\underline{A}}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

$$
\begin{gathered}
\underline{\underline{A^{-1}}}=\frac{1}{|\underline{\underline{A}}|}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right] \\
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\frac{1}{\left|\begin{array}{cc}
k_{1}+k_{2}-m_{1} \omega^{2} & -k_{2} \\
-k_{2} & k_{2}-m_{2} \omega^{2}
\end{array}\right|}\left[\begin{array}{cc}
k_{2}-m_{2} \omega^{2} & k_{2} \\
k_{2} & k_{1}+k_{2}-m_{2} \omega^{2}
\end{array}\right]\left\{\begin{array}{c}
F_{0} \\
0
\end{array}\right\}
\end{gathered}
$$

Note that the determinant in the denominator is the free response determinant. There will be resonance at the system's natural frequencies.

Particular Solution

Look at case $m_{1}=m, m_{2}=\frac{2}{3} m, k_{1}=k_{2}=k$

$$
\begin{gathered}
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\frac{1}{\left|\begin{array}{cc}
2 k-m \omega^{2} & -k \\
-k & k-\frac{2}{3} \omega^{2}
\end{array}\right|}\left[\begin{array}{cc}
k-\frac{2}{3} m \omega^{2} & k \\
k & 2 k-m \omega^{2}
\end{array}\right]\left\{\begin{array}{c}
F_{0} \\
0
\end{array}\right\} \\
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\frac{1}{\left(2 k-m \omega^{2}\right)\left(k-\frac{2}{3} m \omega^{2}\right)-k^{2}}\left\{\begin{array}{c}
\left(k-\frac{2}{3} m \omega^{2}\right) F_{0} \\
k F_{0}
\end{array}\right\} \\
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\frac{1}{k^{2}-\frac{7}{3} m \omega^{2}+\frac{2}{3} m^{2} \omega^{4}}\left\{\begin{array}{c}
\left(k-\frac{2}{3} m \omega^{2}\right) F_{0} \\
k F_{0}
\end{array}\right\} \\
\left\{\begin{array}{l}
\mathbb{X}_{1} \\
\mathbb{X}_{2}
\end{array}\right\}=\frac{1 / m}{\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right)}\left\{\begin{array}{c}
\left(\frac{3}{2} \frac{k}{m}-\omega^{2}\right) F_{0} \\
\frac{3}{2} \frac{k}{m} F_{0}
\end{array}\right\} \\
\omega_{1}^{2}=\frac{k}{2 m}, \quad \omega_{2}^{2}=\frac{3 k}{m}
\end{gathered}
$$

Response Diagrams

(Forcing $\rightarrow F_{0}$). As limit $\omega \rightarrow 0$, steady state response: $\left\{\begin{array}{l}F_{0} / k \\ F_{0} / k\end{array}\right\}$

Figure 2: Forced response diagram for \mathbb{X}_{1}, which represents Cart 1. For ω approaching 0 , the response approaches steady state F_{0} / k. For ω equal to ω_{3}, Cart 1 is stationary and only Cart 2 moves. Figure by MIT OCW.
\mathbb{X}_{1} (Figure 2):
As $\omega \rightarrow \omega_{1}, \mathbb{X}_{1} \rightarrow \infty$.
As ω is just over $\omega_{1} \rightarrow \omega_{2}, \omega_{3}=\sqrt{\frac{3 k}{m}}$, sign change.
As ω goes over ω_{2}, starts at $-\infty$, then decays to 0 .

Figure 3: Forced response diagram for \mathbb{X}_{2}, which represents Cart 2. For ω approaching 0 , the response approaches steady state F_{0} / k. For ω equal to ω_{3}, Cart 2 still exhibits oscillatory behavior. Figure by MIT OCW.
\mathbb{X}_{2} (Figure 3):

As $\omega \rightarrow \omega_{1}$, increase without bound.
As $\omega \rightarrow \omega_{2}$, but just above ω_{1}, negative. As $\omega \rightarrow \omega_{2}$, approach $-\infty$.
As $\omega \rightarrow \omega_{2}$, comes from ∞ down to 0 .
At ω_{3}, first cart is stationary. Anti-resonance (mass 2 sees mass 1 as a rigid wall).

Figure 4: m is not moving so mass 2 sees a "wall" at mass 1. How does this occur? The forcing is equal and opposite to the forces provided by the strings. Figure by MIT OCW.

Adding damping will make the matrix inversion more complicated.
Real life examples of dynamics and vibrations include the Tacoma Narrows bridge collapse, nonlinear deep sea ocean wave formation and breaking, and dynamic pattern formation in nature (for example, shifting formations of starlings in flight).

[^0]
[^0]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

