Lecture 20

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Single Degree of Freedom System

Figure 1: Cart attached to spring and dashpot. Figure by MIT OCW.

$$
m \ddot{x}+c \dot{x}+k x=F(t)
$$

System response? What is $x(t)$?
Use 18.03 Background.

$$
x(t)=\underbrace{\text { Free Response }}_{\text {Complementary Solution, when } F(t)=0}+\underbrace{\text { Response Due to Forcing }}_{\text {Particular Solution }}
$$

This lecture will cover the Free Response.

Free Response

$\underline{\text { Look at } k \rightarrow 0}$

Figure 2: Cart with dashpot only. Figure by MIT OCW.

$$
m \ddot{x}+c \dot{x}=0
$$

Assume conditions $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$.

$$
\begin{gathered}
m \ddot{x}+c \dot{x}=m \dot{v}+c v=0 \\
v=v_{0} e^{(-c t / m)} \text { already used } \dot{x}(0)=v_{0}
\end{gathered}
$$

Integrate $v(t)$ once. Using $x(0)=x_{0}$, we obtain:

$$
x=x_{0}+\frac{m v_{0}}{c}\left(1-e^{-\frac{c}{m} t}\right)
$$

Figure 3: Solution to differential equation. Solution attenuates to a steady state value. Figure by MIT OCW.

Figure 4: Velocity profile of solution. Velocity attenuates to zero. Figure by MIT OCW.

No oscillations. Because $k=0$, there was no restoring term.
$\underline{\text { Look at } m \rightarrow 0}$

$$
c \dot{x}+k x=0
$$

or

$$
\begin{aligned}
& \dot{x}=-\frac{k}{c} x \\
& x(0)=x_{0}
\end{aligned}
$$

Therefore:

$$
x(t)=x_{0} e^{-\frac{k}{c} t}
$$

Figure 5: Solution to differential equation. Position decays to zero. Figure by MIT OCW.

Figure 6: Velocity profile of solution. Value attenuates to steady state value. Figure by MIT OCW.

$$
\dot{x}=-\frac{k x_{0}}{c} e^{-\frac{k}{c} t}
$$

No oscillations in this system.
Dashpot force balances the spring force as $x \rightarrow 0$, spring force $\rightarrow 0$.
Vibrations require a restoring force (e.g. spring) and inertia (e.g. mass).

Full Free Response Problem

So let us consider the full problem:

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=0 \tag{1}
\end{equation*}
$$

Note that $c \dot{x}(c>0)$ is a damping term and is responsible for decay of oscillations.

Examination of Energy

$\frac{d}{d t}(T+V)=\frac{d}{d t}\left(\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}\right)=m \dot{x} \ddot{x}+k x \dot{x}=\dot{x}(m \ddot{x}+k x)=\dot{x}(-c \dot{x})=-c \dot{x}^{2}$
For $c>0$:

$$
\frac{d}{d t}(T+V)<0
$$

Damping. Mechanical energy is dissipated.

For $c<0$:

$$
\frac{d}{d t}(T+V)>0
$$

Energy input (Control system providing energy)

Solution of the Equation with Engineering Quantities

Rewrite

$$
m \ddot{x}+c \dot{x}+k x=0
$$

as:

$$
\begin{gather*}
\ddot{x}+2 \zeta \omega_{n} \dot{x}+\omega_{n}^{2} x=0 \tag{2}\\
\omega_{n}^{2}=\frac{k}{m} \\
\zeta=\frac{c}{2 m \omega_{n}}
\end{gather*}
$$

ω_{n} : Natural Frequency
ζ : Damping Ratio
To solve, we assume a solution of the form $x=A e^{(\lambda t)}$
Substitute in Equation (2):

$$
\begin{gather*}
\lambda^{2}+2 \zeta \omega_{n} \lambda+\omega_{n}^{2}=0 \\
\lambda=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1} \tag{3}
\end{gather*}
$$

When $\zeta^{2}>1$ and $\zeta^{2}<1$, the behavior is different.
Assume $c \geq 0$. $(\zeta \geq 0)$ We have the following cases.

Case 1: Overdamped

$$
\begin{gathered}
\zeta>1 \Rightarrow \lambda_{1}, \lambda_{2}=\text { Real Negative Numbers } \\
x=A_{ \pm} e^{\left(-\zeta \omega_{n} \pm \sqrt{\zeta^{2}-1}\right)} \rightarrow 0 \text { as } t \rightarrow \infty
\end{gathered}
$$

Case 2: Critically Damped

$$
\begin{gather*}
\zeta=1 \Rightarrow \lambda_{1}, \lambda_{2}=-\omega_{n} \\
x=\left(A_{1}+A_{2} t\right) e^{-\omega_{n} t} \rightarrow 0 \text { as } t \rightarrow \infty \tag{4}
\end{gather*}
$$

Equation (4) is the fastest approach to the set point. That is why it is named critically damped.

Case 3: Underdamped

$$
\begin{gathered}
0 \leq \zeta<1 \\
\lambda_{1}, \lambda_{2}=-\zeta \omega_{n} \pm i \omega_{d} \\
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
\end{gathered}
$$

Underdamped (Not enough damping to prevent oscillations). When $\zeta \rightarrow 0$, $\omega_{d} \rightarrow \omega_{n}$ (Natural frequency).

$$
x=\left[A_{1} e^{i \omega_{d} t}+A_{2} e^{-i \omega_{d} t}\right] e^{-\zeta \omega_{n} t}
$$

Must have that A_{1} and A_{2} are complex conjugates because x is real.

$$
\begin{gathered}
x=\left[A_{1}\left(\cos \omega_{d} t+i \sin \omega_{d} t\right)+A_{2}\left(\cos \omega_{d} t-i \sin \omega_{d} t\right)\right] e^{-\zeta \omega_{n} t} \\
=[\underbrace{\left(A_{1}+A_{2}\right)}_{A_{3}} \cos \omega_{d} t+\underbrace{i\left(A_{1}-A_{2}\right)}_{A_{4}} \sin \omega_{d} t] e^{-\zeta \omega_{n} t} \\
A_{1}+A_{2}=A_{3} \\
i\left(A_{1}-A_{2}\right)=A_{4} \\
x=A_{3}\left[\cos \omega_{d} t+\frac{A_{4}}{A_{3}} \sin \omega_{d} t\right] e^{-\zeta \omega_{n} t} \\
x=A_{3}\left[\cos \omega_{d} t+\tan \phi \sin \omega_{d} t\right] e^{-\zeta \omega_{n} t} \\
x=\frac{A_{3}}{\cos \phi}\left[\cos \omega_{d} t \cos \phi+\sin \omega_{d} t \sin \phi\right] e^{-\zeta \omega_{n} t}
\end{gathered}
$$

Note the trigonometric identity.

$$
\begin{equation*}
x(t)=C e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t-\phi\right) \tag{5}
\end{equation*}
$$

$e^{-\zeta \omega_{n} t}$: Decaying in time
$\cos \left(\omega_{d} t-\phi\right)$: Oscillatory Behavior
C and ϕ can be found from initial conditions.

$$
\begin{gather*}
C=\frac{A_{3}}{\cos \phi} \tag{6}\\
\phi=\arctan \frac{A_{4}}{A_{3}} \tag{7}
\end{gather*}
$$

Equations (6) and (7) relate C and ϕ to A_{3} and A_{4}.
But $\frac{1}{\cos ^{2} \phi}=1+\tan ^{2} \phi$.

$$
\begin{gathered}
\frac{1}{\cos ^{2} \phi}=1+\frac{A_{4}^{2}}{A_{3}^{2}} \\
\frac{1}{\cos \phi}=\frac{\sqrt{A_{3}^{2}+A_{4}^{2}}}{A_{3}} \Rightarrow C=\sqrt{A_{3}^{2}+A_{4}^{2}}
\end{gathered}
$$

If $0 \leq \zeta<1$, the solution will show decaying oscillations. How do we determine (C and ϕ) or $\left(A_{3}\right.$ and $\left.A_{4}\right)$? Often easier to relate A_{3} and A_{4} to initial conditions.

Initial Conditions: $x(0)=x_{0}, \dot{x}(0)=v_{0}$

$$
x=\left[A_{3} \cos \omega_{d} t+A_{4} \sin \omega_{d} t\right] e^{-\zeta \omega_{n} t}
$$

At $t=0, x_{0}=A_{3}\left(\right.$ using $\left.x(0)=x_{0}\right)$

$$
\begin{aligned}
\dot{x}= & {\left[-A_{3} \omega_{d} \sin \omega_{d} t+A_{4} \omega_{d} \cos \omega_{d} t\right] e^{-\zeta \omega_{n} t} } \\
& -\zeta \omega_{n}\left[A_{3} \cos \omega_{d} t+A_{4} \sin \omega_{d} t\right] e^{-\zeta \omega_{n} t}
\end{aligned}
$$

At $t=0$:

$$
\begin{gather*}
v_{0}=A_{4} \omega_{d}-\zeta \omega_{n} A_{3}=A_{4} \omega_{d}-\zeta \omega_{n} x_{0} \\
A_{4}=\frac{v_{0}+\zeta \omega_{n} x_{0}}{\omega_{d}} \\
C=\sqrt{x_{0}^{2}+\left(\frac{v_{0}+\zeta \omega_{n} x_{0}}{\omega_{d}}\right)^{2}} \tag{8}\\
\tan \phi=\frac{v_{0}+\zeta \omega_{n} x_{0}}{\omega_{d} x_{0}} \tag{9}
\end{gather*}
$$

Examine solution.

$$
x(t)=C e^{-\zeta \omega_{n} t} \cos \left(\omega_{d} t-\phi\right)
$$

$e^{-\zeta \omega_{n} t}$: Decay
$\cos \left(\omega_{d} t-\phi\right)$: Oscillating

Figure 7: Solution both decays and oscillates given the presence of exponential solution and sinusoidal solution. Figure by MIT OCW.

Calculate Amplitude.

$$
\begin{gather*}
\frac{x(t)}{x\left(t+n \tau_{d}\right)}=\frac{e^{-\zeta \omega_{n} t}}{e^{\left[-\zeta \omega_{n}\left(t+n \tau_{d}\right)\right]}}=e^{\zeta \omega_{n} n \tau_{d}} \\
\ln \left[\frac{x(t)}{x\left(t+n \tau_{d}\right)}\right]=n \zeta \omega_{n} \tau_{d}=n \zeta \frac{\omega_{n} 2 \pi}{\omega_{d}}=n \zeta \frac{\omega_{n} 2 \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}=n \zeta \frac{2 \pi}{\sqrt{1-\zeta^{2}}} \tag{10}
\end{gather*}
$$

For $\zeta \ll 1$:

$$
\begin{equation*}
\ln \left[\frac{x(t)}{x\left(t+n \tau_{d}\right)}\right]=2 \pi n \zeta \tag{11}
\end{equation*}
$$

Need ω_{n}, ζ to define system.

Example Experiment: Flexible Rod.

Figure 8: Flexible rod. Figure by MIT OCW.

Measure frequency of oscillation: ω_{d}.
Measure amplitude over several periods to obtain $\frac{x(t)}{x\left(t+n \tau_{d}\right)}$. This ratio is related to the damping ratio ζ by the equations (10) or (11) if $\zeta \ll 1$.
With ω_{d} and ζ, one can calculate the natural frequency ω_{n}.

