Lagrangian Dynamics: Derivations of Lagrange's Equations

Constraints and Degrees of Freedom

Constraints can be prescribed motion

Figure 1: Two masses, m_{1} and m_{2} connected by a spring and dashpot in parallel. Figure by MIT OCW.

2 degrees of freedom
If we prescribe the motion of m_{1}, the system will have only 1 degree of freedom, only x_{2}. For example,

$$
x_{1}(t)=x_{0} \cos \omega t
$$

$x_{1}=x_{1}(t)$ is a constraint. The constraint implies that $\delta x_{1}=0$. The admissible variation is zero because position of x_{1} is determined.
For this system, the equation of motion (use Linear Momentum Principle) is

$$
\begin{gathered}
m \ddot{x}_{2}=-k\left(x_{2}-x_{1}(t)\right)-c\left(\dot{x}_{2}-\dot{x}_{1}(t)\right) \\
m \ddot{x}_{2}+c \dot{x}_{2}+k x_{2}=c \dot{x}_{1}(t)+k x_{1}(t)
\end{gathered}
$$

[^0]$c \dot{x}_{1}(t)+k x_{1}(t)$: known forcing term
differential equation for $x_{2}(t)$: ODE, second order, inhomogeneous

Lagrange's Equations

For a system of n particles with ideal constraints

Linear Momentum

$$
\begin{gather*}
\dot{p}_{i}=\underline{f}_{i}^{e x t}+\underline{f}_{i}^{\text {constraint }} \tag{1}\\
\sum_{i=1}^{N}\left(\underline{f}_{i}^{e x t}+\underline{f}_{i}^{\text {constraint }}-\underline{\dot{p}}_{i}\right)=0 \tag{2}\\
\sum_{i=1} \underline{f}_{i}^{\text {constraint }}=0
\end{gather*}
$$

D'Alembert's Principle

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\underline{f}_{i}^{e x t}-\underline{\dot{p}}_{i}\right) \cdot \delta \underline{r}_{i}=0 \tag{3}
\end{equation*}
$$

Choose $\dot{p}_{i}=0$ at equilibrium. We have the principle of virtual work.

Hamilton's Principle

Now $\underline{p}_{i}=m_{i} \ddot{r}_{i}$, so we can write:

$$
\begin{gather*}
\sum_{i=1}^{N}\left(m_{i} \ddot{\underline{\ddot{q}}}_{i}-\underline{f}_{i}^{e x t}\right) \cdot \delta \underline{r}_{i}=0 \tag{4}\\
\delta W=\sum_{i=1}^{N} \underline{f}_{i}^{e x t} \cdot \delta \underline{r}_{i} \tag{5}
\end{gather*}
$$

which is the virtual work of all active forces, conservative and nonconservative.

$$
\begin{equation*}
\sum_{i=1}^{N} m_{i} \ddot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}=\sum_{i=1}^{N} m_{i}\left[\frac{d}{d t}\left(\dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right)-\dot{\underline{r}}_{i} \cdot \delta \dot{\underline{r}}_{i}\right] \tag{6}
\end{equation*}
$$

(6) is obtained by using $\frac{d}{d t}(\underline{\underline{r}} \cdot \delta \underline{r})=\underline{\ddot{r}} \delta \underline{r}+\underline{\dot{r}} \delta \underline{\dot{r}}$
$\dot{\underline{r}}_{i} \cdot \delta \dot{\underline{r}}_{i}$ can be rewritten as $\frac{1}{2} \delta(\underline{\underline{r}} \cdot \underline{r})$ by using $\delta(\underline{\underline{r}} \cdot \dot{\underline{r}})=2 \underline{\dot{r}} \delta \dot{\underline{r}}$.
Substituting this in (6), we can write:

$$
\begin{equation*}
\sum_{i=1}^{N} m_{i} \ddot{\underline{\underline{q}}}_{i} \cdot \delta \underline{r}_{i}=\sum_{i=1}^{N} m_{i} \frac{d}{d t}\left(\dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right)-\delta \sum_{i=1}^{N} \frac{1}{2} m\left(\underline{\underline{\underline{r}}}_{i} \cdot \dot{\underline{\underline{r}}}_{i}\right) \tag{7}
\end{equation*}
$$

The second term on the right is a kinetic energy term.

$$
\delta \sum_{i=1}^{N} \frac{1}{2} m\left(\dot{\underline{r}}_{i} \cdot \dot{\underline{r}}_{i}\right)=\delta(\text { Kinetic Energy })=\delta T
$$

Now we rewrite (4) as:

$$
\begin{equation*}
\sum_{i=1}^{N} m_{i} \ddot{\ddot{r}}_{i} \cdot \delta \underline{r}_{i}-\sum_{i=1}^{N} \underline{f}_{i}^{e x t} \cdot \delta r_{i}=0 \tag{8}
\end{equation*}
$$

Substitute (5) and (7)into (8) to obtain:

$$
\sum_{i=1}^{N} m_{i} \frac{d}{d t}\left(\dot{\underline{\underline{x}}}_{i} \cdot \delta \underline{r}_{i}\right)-\delta T-\delta W=0
$$

Rearrange to give

$$
\begin{equation*}
\delta T+\delta W=\sum_{i=1}^{N} m_{i} \frac{d}{d t}\left(\dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right) \tag{9}
\end{equation*}
$$

Integrate (9) between two definite states in time $\underline{r}\left(t_{1}\right)$ and $\underline{r}\left(t_{2}\right)$

Figure 2: Between t_{1} and t_{2}, there are admissible variations δx and δy. We are integrating over theoretically admissible states between t_{1} and t_{2} that satisfy all constraints. Figure by MIT OCW.

$$
\begin{align*}
\int_{t_{1}}^{t_{2}}(\delta W+\delta T) d t & =\int_{t_{1}}^{t_{2}} \sum_{i=1}^{N} m_{i} \frac{d}{d t}\left(\dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right) d t \tag{10}\\
& =\left.\sum_{i=1}^{N} m_{i} \dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right|_{t_{1}} ^{t_{2}} \tag{11}
\end{align*}
$$

The right hand side, $\left.\sum_{i=1}^{N} m_{i} \dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right|_{t_{1}} ^{t_{2}}=0$.
Why? $\left.\dot{\underline{r}}_{i} \cdot \delta \underline{r}_{i}\right|_{t_{1}} ^{t_{2}}=0$, because at a particular time, $\delta \underline{r}_{i}\left(t_{i}\right)=0$. Also, we know the initial and final states. It is the behavior in between that we want to know.

The result is the extended Hamilton Principle.

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}(\delta W+\delta T) d t=0 \tag{12}
\end{equation*}
$$

Generalized Fores and the Lagrangian

$$
\delta W=\delta W^{\text {conservative }}+\delta W^{\text {nonconservative }}=-\delta V+\sum_{j=1}^{m} Q_{j} \delta q_{j}
$$

Conservative δW :

$$
\begin{gathered}
\delta W=\underline{f}_{i}^{c o n s} \cdot \delta \underline{r}_{i} \\
\underline{f}_{i}^{c o n s}=-\frac{\partial V}{\partial \underline{r}_{i}} \\
\delta W=-\frac{\partial V}{\partial \underline{r}_{i}} \cdot \delta \underline{r}_{i}=-\delta V
\end{gathered}
$$

Nonconservative δW :

$$
\begin{gathered}
Q_{j} \delta q_{j} \\
\sum_{j=1}^{m} Q_{j} \delta q_{j}
\end{gathered}
$$

m : Total number of generalized coordinates
$Q_{j}=\Xi_{j}$: Generalized force for nonconservative work done
$q_{j}=\xi_{j}:$ Generalized coordinate
Substitute for δW in (12) to obtain:

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left(\delta T-\delta V+\sum_{j=1}^{m} Q_{j} \delta q_{j}\right) d T=0 \tag{13}
\end{equation*}
$$

Define Lagrangian

$$
L=T-V
$$

The Lagrangian is a function of all the generalized coordinates, the generalized velocities, and time:

$$
L=L\left(q_{j}, \dot{q}_{j}, t\right) \text { where } j=1,2,3 \ldots, m
$$

(13) can now be written as

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left[\delta L\left(q_{j}, \dot{q}_{j}, t\right)+\sum_{j=1}^{m} Q_{j} \delta q_{j}\right] d t=0 \tag{14}
\end{equation*}
$$

Lagrange's Equations

We would like to express $\delta L\left(q_{j}, \dot{q}_{j}, t\right)$ as (a function) δq_{j}, so we take the total derivative of L. Note δt is 0 , because admissible variation in space occurs at a fixed time.

$$
\begin{align*}
& \delta L=\sum_{j=1}^{m}\left[\left(\frac{\partial L}{\partial q_{j}}\right) \delta q_{j}+\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta \dot{q}_{j}+\left(\frac{\partial L}{\partial t}\right) \delta t\right] \\
& \int_{t_{1}}^{t_{2}}(\delta L) d t=\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m}\left[\left(\frac{\partial L}{\partial q_{j}}\right) \delta q_{j}+\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta \dot{q}_{j}\right] d t \tag{15}
\end{align*}
$$

To remove the $\delta \dot{q}_{j}$ in (15), integrate the second term by parts with the following substitutions:

$$
\left.\left.\begin{array}{c}
u=\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \\
d u=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \\
y=\delta q_{j} \\
d y=\delta \dot{q}_{j} \\
\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta \dot{q}_{j} d t=\sum_{j=1}^{m} \int_{t_{1}}^{t_{2}}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta \dot{q}_{j} d t \\
=\sum_{j=1}^{m}\left\{\left.\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta q_{j}\right|_{t_{1}} ^{t_{2}}-\int_{t_{1}}^{t_{2}}\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta q_{j}\right] d t\right\} \\
\left.\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta q_{j}\right|_{t_{1}} ^{t_{2}}=0 \\
\partial \dot{q}_{j} \tag{16}
\end{array}\right) \delta \dot{q}_{j} d t=-\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m} \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta q_{j} d t\right]
$$

Combine (14), (15), and (16) to get:

$$
\begin{gathered}
\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m}\left[\left(\frac{\partial L}{\partial q_{j}}\right) \delta q_{j}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right) \delta q_{j}+Q_{j} \delta q_{j}\right] d t=0 \\
\int_{t_{1}}^{t_{2}} \sum_{j=1}^{m}\left[-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)+\left(\frac{\partial L}{\partial q_{j}}\right)+Q_{j}\right] \delta q_{j} d t=0
\end{gathered}
$$

$d t$ has finite values.
δq_{j} are independent and arbitrarily variable in a holonomic system. They are finite quantities. Thus, for the integral to be equal to 0 ,

$$
-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)+\left(\frac{\partial L}{\partial q_{j}}\right)+Q_{j}=0
$$

Equations of Motion (Lagrange):

$$
Q_{j}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\left(\frac{\partial L}{\partial q_{j}}\right)
$$

or:

$$
\Xi_{j}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\xi}_{j}}\right)-\left(\frac{\partial L}{\partial \xi_{j}}\right)
$$

Where $Q_{j}=\Xi_{j}=$ generalized force, $q_{j}=\xi_{j}=$ generalized coordinate, $j=$ index for the m total generalized coordinates, and L is the Lagrangian of the system.

Although these equations were formally derived for a system of particles, the same is true for rigid bodies.

Example 1: 2-D Particle, Horizontal Plane

Figure 3: 2-D Particle on a horizontal plane subject to a force F. Figure by MIT OCW.

Cartesian Coordinates

$$
\begin{gathered}
q_{1}=x \\
q_{2}=y \\
\underline{r}=x \hat{\imath}+y \hat{\jmath} \\
\dot{\underline{r}}=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath} \\
|\underline{v}|^{2}=\underline{\dot{r}} \cdot \underline{\dot{r}}=\dot{x}^{2}+\dot{y}^{2}=\dot{q}_{1}^{2}+\dot{q}_{2}^{2} \\
Q_{1}=F \cos \theta \\
Q_{2}=F \sin \theta \\
L=T-V \\
T=\frac{1}{2} m(\underline{\underline{r}} \cdot \dot{\underline{r}}) \\
=\frac{1}{2} m\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right)
\end{gathered}
$$

$V=0$ (in horizontal plane, position with respect to gravity same at all locations)
For q_{1} or (x)

$$
\begin{gathered}
\frac{\partial L}{\partial q_{1}}=0 \\
\frac{\partial L}{\partial \dot{q}_{1}}=m \dot{q}_{1} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{1}}=m \ddot{q}_{1} \\
m \ddot{q}_{1}-0=F \cos \theta \\
m \ddot{q}_{2}=F \sin \theta
\end{gathered}
$$

Polar Coordinates

Figure 4: 2-D Particle subject to a force F described by polar coordinates. Figure by MIT OCW.

$$
\begin{gathered}
q_{1}=r \\
q_{2}=\phi \\
\underline{F}=F_{r} \hat{e}_{r}+F_{\phi} \hat{e}_{\phi} \\
\underline{r}=r(t) \hat{e}_{r} \\
\underline{\dot{r}}=\dot{r} \hat{e}_{r}+r \dot{\phi} \hat{e}_{\phi} \\
|\underline{v}|^{2}=\dot{r}^{2}+r^{2} \dot{\phi}^{2} \\
L=T-V=\frac{1}{2} m\left(\dot{q}_{1}^{2}+q_{1}^{2} \dot{q}_{2}^{2}\right)+0
\end{gathered}
$$

q_{1} :

$$
\begin{gathered}
\frac{\partial L}{\partial q_{1}}=m q_{1} \dot{q}_{2}^{2} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{1}}\right)=m \ddot{q}_{1}
\end{gathered}
$$

q_{2} :

$$
\frac{\partial L}{\partial q_{2}}=0
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{2}}\right)=\frac{d}{d t}\left(m q_{1}^{2} \dot{q}_{2}\right)=m\left(2 q_{1} \dot{q}_{1} \dot{q}_{2}+q_{1}^{2} \ddot{q}_{2}\right)
$$

$\underline{q}_{1}(r): Q_{1}=F_{r}$
$\underline{Q}_{2}=F_{\phi} \cdot r$: moment.

$$
\begin{gathered}
m\left(2 \dot{q}_{1} q_{1} \dot{q}_{2}+q_{1}^{2} \ddot{q}_{2}\right)=F_{\phi} \cdot q_{1} \\
m\left(2 \dot{q}_{1} \dot{q}_{2}+q_{1} \ddot{q}_{2}\right)=F_{\phi}
\end{gathered}
$$

$$
m \ddot{q}_{1}-m q_{1} \ddot{q}_{2}=F_{r}
$$

Example: Falling Stick

$\mu=0$ (frictionless) \rightarrow Slips

Figure 5: Falling stick. The stick is subject to a gravitational force, mg. The frictionless surface causes the stick to slip. Figure by MIT OCW.

G: Center of Mass
l : length
Constraint: 1 point touching the ground.
2 degrees of freedom

$$
\begin{gathered}
q_{1}=x_{G} \\
q_{2}=\phi
\end{gathered}
$$

Must find L and Q_{j}. Look for external nonconservative forces that do work.
None. Normal does no work. Gravity is conservaitve.

$$
Q_{1}=Q_{2}=0
$$

Lagrangian

$$
L=T-V
$$

Rigid bodies: Kinetic energy of translation and rotation

$$
\begin{gathered}
T=\frac{1}{2} m\left(\underline{\underline{r}}_{G} \cdot \underline{\underline{r}}_{G}\right)+\frac{1}{2} I_{G}(\underline{\omega} \cdot \underline{\omega}) \\
y_{G}=\frac{l}{2} \sin \phi \\
\dot{y}_{G}=\frac{l}{2} \cos \phi \dot{\phi} \\
\underline{\omega}=\dot{\phi} \hat{k} \\
\underline{\dot{r}}_{G}=\dot{x}_{G} \hat{\imath}+\dot{y}_{G} \hat{\jmath}=\dot{x}_{G} \hat{\imath}+\frac{l}{2} \cos \phi \dot{\phi} \hat{\jmath} \\
\underline{\underline{r}}_{G} \cdot \underline{\dot{r}}_{G}=\dot{x}_{G}^{2}+\frac{l^{2}}{4} \cos ^{2} \phi \dot{\phi}^{2} \\
T=\frac{1}{2}\left[\dot{q}_{1}^{2}+\frac{l^{2}}{4} \cos ^{2} q_{2} \dot{q}_{2}^{2}\right]+\frac{1}{2}\left(\frac{1}{12} m l^{2}\right) \dot{q}_{2}^{2}
\end{gathered}
$$

See Lecture 16 for the rest of the example.

[^0]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

