$$
4 / 4 / 2007
$$

Lecture 14

Lagrangian Dynamics: Virtual Work and Generalized Forces

Reading: Williams, Chapter 5

$$
\begin{gathered}
L=T-V \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=Q_{i}
\end{gathered}
$$

All q_{i} are scalars.
q_{i} : Generalized Coordinates
L : Lagrangian
Q_{i} : Generalized Forces

Admissible Variations/Virtual Displacements

Virtual Displacement:
Admissible variations: hypothetical (not real) small change from one geometrically admissible state to a nearby geometrically admissible state.

Bead on Wire

Figure 1: Bead on a wire. Figure by MIT OCW.

[^0]Both δ_{x} and δ_{y} are admissible variations. Hypothetical geometric configuration displacement.

$$
\begin{gathered}
\delta \neq d \\
\delta x \neq d x
\end{gathered}
$$

$d x$ implies t involved.

$$
\begin{gathered}
y=f(x) \\
d y=\frac{d f}{d x} \cdot d x \\
\delta y=\frac{d f(x)}{d x} \cdot \delta x
\end{gathered}
$$

Generalized Coordinates

Minimal, complete, and independent set of coordinates
s is referred to as complete: capable of describing all geometric configurations at all times.
s is referred to as independent: If all but one coordinate is fixed, there is a continuous range of values that the free one can take. That corresponds to the admissible system configurations.

Example: 2-Dimensional Rod

Figure 2: 2D rod with fixed translation in x and y but free to rotate about θ. Figure by MIT OCW.

If we fix x and y, we can still rotate in a range with θ.
\# degrees of freedom $=$ \# of generalized coordinates: True for 2.003J. True for Holonomic Systems.

Lagrange's equations work for Holonomic systems.

Virtual Work

$$
W=\sum_{i} \underline{f}_{i} \cdot \underline{d r}_{i} \leftarrow \text { Actual Work }
$$

$i=$ forces act at that location

$$
\begin{gathered}
\delta W=\sum_{i} \underline{f}_{i} \cdot \delta \underline{r}_{i} \leftarrow \text { Virtual Work } \\
\underline{f}_{i}=\underline{f}_{i}^{\text {applied }}+\underline{f}_{i}^{\text {constrained }}
\end{gathered}
$$

Constrained: Friction in roll. Constraint to move on surface. Normal forces. Tension, rigid body constraints.

$$
\delta w=\sum_{i} \underline{f}_{i}^{\text {app }} \cdot \delta \underline{r}_{i}=0 \text { at equilibrium }
$$

No work done because no motion in direction of force. No virtual work.

$$
\sum_{i} \underline{f}_{i}=0
$$

Example: Hanging Rigid Bar

Figure 3: Hanging rigid bar. The bar is fixed translationally but is subject to a force, F. It therefore can displace itself rotationally about its pivot point. Figure by MIT OCW.

Displacement:

$$
\begin{aligned}
& \delta \underline{y}_{A}=-a \delta \theta \hat{\jmath} \\
& \delta \underline{y}_{B}=-l \delta \theta \hat{\jmath}
\end{aligned}
$$

Forces:

$$
\begin{gathered}
\underline{F}=-F \hat{\jmath} \\
\underline{R}=R \hat{\jmath}
\end{gathered}
$$

Two forces applied: $i=2$

$$
\begin{aligned}
& \delta w=F l \delta \theta-R a \delta \theta=0 \\
& R=\frac{F l}{a} \text { at equilibrium }
\end{aligned}
$$

Could also have taken moments about O.

Example: Tethered Cart

Figure 4: Tethered cart. The cart is attached to a tether that is attached to the wall. Figure by MIT OCW.

$$
\begin{gathered}
\delta w=F \delta y_{B}-R \delta x_{c}=0 \\
y_{B}=l \sin \theta
\end{gathered}
$$

Using $\delta y=\frac{d f(x)}{d x} \delta x_{c}$

$$
\begin{gathered}
\delta y_{B}=l \cos \theta \delta \theta \\
\delta x_{c}=-2 l \sin \theta \delta \theta \\
(-F l \cos \theta+2 R \sin \theta) \delta \theta=0 \\
-F l \cos \theta+2 R \sin \theta=0 \Rightarrow R=\frac{F}{2 \tan \theta} \text { at equilibrium }
\end{gathered}
$$

Figure 5: Application of Newton's method to solve problem. The indicated extra forces are needed to solve using Newton. Figure by MIT OCW.

Generalized forces for Holonomic Systems

In an holonomic system, the number of degrees of freedom equals the number of generalized coordinates.

$$
\delta w=\sum_{i} \underline{f}_{i} \cdot \delta \underline{r}_{i}=\sum Q_{i} \delta q_{j}
$$

$i=$ number of applied forces: 1 to n
$j=$ number of generalized coordinates

$$
\underline{r}_{i}=r_{i}\left(q_{1}, q_{2}, \ldots q_{j}\right)
$$

r_{i} : Position of point where force is applied

$$
\delta \underline{r}_{i}=\sum_{j}^{m} \frac{\partial \underline{r}_{i}}{\partial q_{j}} \delta q_{j}
$$

Substitute:

$$
\begin{gathered}
\sum_{i}^{n} \underline{f}_{i} \sum_{j}^{m} \frac{\partial \underline{r}_{i}}{\partial q_{j}} \cdot \delta q_{j}=\sum_{j}^{m}\left(\sum_{i}^{n} \underline{f}_{i} \frac{\partial \underline{r}_{i}}{\partial q_{j}}\right) \cdot \partial q_{j} \\
Q_{j}=\sum_{i}^{n} \underline{f}_{i} \cdot \frac{\partial \underline{r}_{i}}{\partial q_{j}} \text { Generalized Forces } \\
\underline{f}_{i}=\underline{f}_{i}^{\mathrm{NC}}+\underline{f}_{i}^{\mathrm{CONS}}
\end{gathered}
$$

$f_{i}^{\text {CONS. }}$: Gravity, Spring, and Buoyancy are examples; Potential Function Exists.

$$
\underline{f}^{\mathrm{CONS}}=-\frac{\partial V}{\partial \underline{r}}
$$

Example:
$V_{g}=m g z, \underline{r}=z \hat{\jmath}$
$\underline{f}_{g}=-m g \frac{\partial z}{d z} \hat{\jmath}=-m g \hat{\jmath}$

$$
f_{i}^{\text {cons. }} \cdot \frac{\partial \underline{r}_{i}}{\partial q}=-\frac{\partial V}{\partial \underline{r}} \frac{\partial \underline{r}}{\partial q_{j}}=-\frac{\partial V}{\partial q_{j}}
$$

The conservative forces are already accounted for by the potential energy term in the Lagrangian for Lagrange's Equation

$$
\begin{gathered}
Q_{j}^{N C}=\sum_{i}^{n} \underline{f}_{i}^{N C} \cdot \frac{\partial \underline{r}_{i}}{\partial q_{j}} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=Q_{j}^{N C}
\end{gathered}
$$

Lagrange's Equation
$Q_{j}^{N C}=$ nonconservative generalized forces
$\frac{\partial L}{\partial q_{j}}$ contains $\frac{\partial V}{\partial q_{j}}$.

Example: Cart with Pendulum, Springs, and Dashpots

Figure 6: The system contains a cart that has a spring (k) and a dashpot (c) attached to it. On the cart is a pendulum that has a torsional spring $\left(k_{t}\right)$ and a torsional dashpot $\left(c_{t}\right)$. There is a force applied to m that is a function of time $F=F(t)$ We will model the system as 2 particles in 2 dimensions. Figure by MIT OCW.

[^1]4 degrees of freedom: 2 constraints. Cart moves in only 1 direction. Rod fixes distance of the 2 particles.

Thus, there are a net 2 degrees of freedom. For 2.003J, all systems are holonomic (the number of degrees of freedom equals the number of generalized coordinates).

$$
\begin{aligned}
& q_{1}=x \\
& q_{2}=\theta
\end{aligned}
$$

Figure 7: Forces felt by cart system. Figure by MIT OCW.
\underline{F}_{1} : Damper and Spring in $-x$ direction

$$
-(k x+c \dot{x}) \hat{\imath}
$$

\underline{F}_{2} : Two torques:

$$
\underline{\tau}=-\left(k_{t} \theta+c_{t} \dot{\theta} \hat{k}\right.
$$

$\underline{F}_{3}:$

$$
\begin{gathered}
\underline{F}_{3}=F_{0} \sin \omega t \hat{\imath} \\
\underline{r}_{A}=x \hat{\imath}=q_{1} \hat{\imath} \leftarrow \underline{r}_{1} \\
\underline{r}_{B}=\underline{r}_{A}+\underline{r}_{B / A}=(x+l \sin \theta) \hat{\imath}-l \cos \theta \hat{\jmath} \leftarrow \underline{r}_{3} \\
\underline{r}_{2}=\theta \hat{k}(\text { Torque creates angular displacement })=q_{2} \hat{k}
\end{gathered}
$$

$\underline{Q_{1}}:$
$\frac{\partial \underline{r}_{1}}{\partial q_{1}}=1 \hat{\imath}, \frac{\partial \underline{r}_{2}}{\partial q_{1}}=0, \frac{\partial \underline{r}_{3}}{\partial q_{1}}=1 \hat{\imath}$

$$
\begin{gathered}
Q_{1}=-c \dot{q}_{1}+F_{0} \sin \omega t \\
\frac{\partial \underline{r}_{1}}{\partial q_{2}}=0, \frac{\partial \underline{r}_{2}}{\partial q_{2}}=1 \hat{k}, \frac{\partial \underline{r}_{3}}{\partial q_{2}}=l \cos q_{2} \hat{\imath}+l \sin q_{2} \hat{\jmath} \\
Q_{2}=-c_{t} \dot{q}_{2}+F_{0} \sin \omega t \cdot l \cos q_{2}
\end{gathered}
$$

With the generalized forces, we can write the equations of motion.

Kinematics

M:

$$
\begin{aligned}
\underline{r}_{M} & =x \hat{\imath} \\
\dot{\underline{r}}_{M} & =\dot{x} \hat{\imath} \\
\underline{\underline{r}}_{M} & =\ddot{x} \hat{\imath}
\end{aligned}
$$

m:

$$
\begin{gathered}
\underline{r}_{m}=(x+l \sin \theta) \hat{\imath}-l \cos \theta \hat{\jmath} \\
\dot{\underline{r}}_{m}=(\dot{x}+l \cos \theta \cdot \dot{\theta}) \hat{\imath}+l \sin \theta \dot{\theta} \hat{\jmath} \\
\underline{\ddot{r}}_{m}=\left(\ddot{x}+l(\cos \theta) \ddot{\theta}-l(\sin \theta) \dot{\theta}^{2}\right) \hat{\imath}+\left(l(\sin \theta) \ddot{\theta}+l(\cos \theta) \dot{\theta}^{2}\right) \hat{\jmath}
\end{gathered}
$$

Generalized Coordinates: $q_{1}=x$ and $q_{2}=\theta$.

Lagrangian

$$
\begin{gather*}
L=T-V \\
T=T_{M}+T_{m} \\
T_{M}=\frac{1}{2} M\left(\dot{\underline{r}}_{M} \cdot \dot{\underline{r}}_{M}\right)=\frac{1}{2} M \dot{x}^{2} \\
T_{m}=\frac{1}{2} m\left(\dot{\underline{r}}_{m} \cdot \dot{\underline{r}}_{m}\right) \tag{1}\\
=\frac{1}{2} m\left(\dot{x}^{2}+2 l \dot{x} \cos \theta \dot{\theta}+l^{2} \dot{\theta}^{2}\right) \tag{2}
\end{gather*}
$$

$$
T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+2 l \dot{x} \cos \theta \dot{\theta}+l^{2} \dot{\theta}^{2}\right)
$$

$$
\begin{align*}
V & =V_{M, g}+M_{M, k}+V_{m, g}+V_{m, k_{t}} \tag{3}\\
& =M g(0)+\frac{1}{2} k\left(\underline{\dot{r}}_{M} \cdot \dot{\dot{r}}_{M}\right)+m g(-l \cos \theta)+\frac{1}{2} k_{t} \theta^{2} \tag{4}
\end{align*}
$$

Symbol	Potential Energy
$V_{M, g}$	Gravity on M
$V_{M, k}$	Spring on M
$V_{m, g}$	Gravity on m
$V_{m, k_{t}}$	Torsional Spring on m
$V=\frac{1}{2} k x^{2}+(-m g l \cos \theta)+\frac{1}{2} k_{t} \theta^{2}$	

Substitute in $L=T-V$

$$
L=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left(\dot{x}^{2}+2 l \dot{x} \dot{\theta} \cos \theta+l^{2} \dot{\theta}^{2}\right)-\frac{1}{2} k x^{2}+m g l \cos \theta-\frac{1}{2} k_{t} \theta^{2}
$$

Equations of Motion

Use $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\left(\frac{\partial L}{\partial q_{i}}\right)=\Xi_{i}$ to derive the equations of motion. $\Xi_{i}=Q_{i}$.
From before, $\Xi_{x}=F_{0} \sin \omega_{0} t-c \dot{x}$ and $\Xi_{\theta}=F_{0}(\sin \omega t) l \cos \theta-c_{t} \dot{\theta}$.

For Generalized Coordinate x
$\delta x \neq 0$ and $\delta \theta=0$. Units of Force.

$$
\begin{gathered}
\frac{\partial L}{\partial x}=-k x \\
\frac{\partial L}{\partial \dot{x}}=(M+m) \dot{x}+m l(\cos \theta) \dot{\theta} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=(M+m) \ddot{x}+m l \ddot{\theta} \cos \theta+m L(-\sin \theta) \dot{\theta}^{2} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=(M+m) \ddot{x}+m l \ddot{\theta}(\cos \theta)+m l(-\sin \theta) \dot{\theta}^{2}+k x=F_{0} \sin \omega t-c \dot{x}
\end{gathered}
$$

For Generalize Coordinate θ

$\delta x=0$ and $\delta \theta \neq 0$. Units of Torque.

$$
\begin{gathered}
\frac{\partial L}{\partial \theta}=m l \dot{x} \dot{\theta}(-\sin \theta)-m g l \sin \theta-k_{t} \theta \\
\frac{\partial L}{\partial \dot{\theta}}=m l \dot{x} \cos \theta+m l^{2} \dot{\theta} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=m l \dot{x}(-\sin \theta) \dot{\theta}+m l \ddot{x} \cos \theta+m l^{2} \ddot{\theta} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=m l \dot{x} \dot{\theta}(-\sin \theta)+m l \ddot{x} \cos \theta+m l^{2} \ddot{\theta}-m l \dot{x} \dot{\theta}(-\sin \theta)+m g l \sin \theta+k_{t} \theta \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=m l \ddot{x} \cos \theta+m l^{2} \ddot{\theta}+m g l \sin \theta+k_{t} \theta=F_{0}(\sin \omega t) l \cos \theta-c_{t} \theta
\end{gathered}
$$

[^0]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

[^1]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

