$$
3 / 14 / 2007
$$

Lecture 11

2D Motion of Rigid Bodies: Finding Moments of Inertia, Rolling Cylinder with Hole Example

Finding Moments of Inertia

Figure 1: Rigid Body. Figure by MIT OCW.

$$
\begin{aligned}
I_{C} & =\sum_{i} m_{i}\left|\rho_{i}\right|^{2} \\
& =\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
\end{aligned}
$$

I_{C} is the Moment of Inertia about C.

Example: Uniform Thin Rod of Length L and Mass M

Figure 2: Uniform thin rod of length L and mass M. Figure by MIT OCW.

$$
\begin{aligned}
I_{C} & =\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \text { For very thin rod, } y_{i} \text { is small enough to neglect. } \\
& \approx \sum_{i} m_{i} x_{i}^{2}
\end{aligned}
$$

Rod has mass/length $=\rho$.
Convert to integral.

$$
\begin{gathered}
I_{C}=\int_{\mathrm{rod}} x^{2} d m \\
d m=\rho d x \\
I_{C}=\int_{-L / 2}^{L / 2} x^{2} \rho d x \\
=\left[\rho \frac{x^{3}}{3}\right]_{-L / 2}^{L / 2}=\rho \frac{L^{3}}{12}
\end{gathered}
$$

We know that mass $M=\rho L$.
Therefore:

$$
I_{C}=\frac{M L^{2}}{12}
$$

Example: Uniform Thin Disc of Radius R

Figure 3: Uniform thin disc of radius R. Figure by MIT OCW.

Let $\rho=$ mass/area. Consider a sliver that is a distance r from the center on this disc of radius R.

$$
\begin{aligned}
I_{C} & =\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \\
& =\int_{\text {disc }}\left(x^{2}+y^{2}\right) d m \\
& =\int_{0}^{R} r^{2} 2 \pi r \rho d r \\
& =\int_{0}^{R} \rho 2 \pi r^{3} d r=2 \pi \rho \frac{R^{4}}{4} \\
& =\pi R^{2} \rho \frac{R^{2}}{2}
\end{aligned}
$$

Mass of Disc: $M=\pi R^{2} \rho$. Thus,

$$
I_{C}=\frac{M R^{2}}{2}
$$

Example: Rolling Cyinder with a Hole

Find the equation of motion for a cylinder with a hole rolling without slip on a horizontal surface. In the hole with center $\mathrm{A}, R_{2}=R / 2$.

Figure 4: Rolling cylinder with hole shown at 2 distinct positions. Figure by MIT OCW.

Kinematics

2 Constraints: 1. Rolling on surface 2. No slip condition
Use 1 generalized coordinate θ to describe the motion
Only need 1 equation.
For this example, we will use the work-energy principle to obtain the equation.

1. Gravity is a potential force.
2. Normal force on object: At point of contact, velocity is zero so no work done.

No work done by external forces therefore $T+V=$ constant.
$T=\frac{1}{2} M\left|\underline{v}_{C}\right|^{2}+\frac{1}{2} I_{C}|\underline{\omega}|^{2}$. Need center of mass. Where is the center of mass? Below O, because of hole.

Kinetics

Center of Mass Calculation

First find position of center of mass.
We know the center of mass of disc without hole: Point O. Can think of the hole to be "negative mass."

Consider moments about $O X^{\prime}$ at point O

$$
\rho \pi R^{2}(0)=\rho\left(\pi R^{2}-\frac{\pi R^{2}}{4}\right) O C-\rho \frac{\pi R^{2}}{4} \frac{R}{2}
$$

Distance from O to O is zero.
$\rho\left(\pi R^{2}-\frac{\pi R^{2}}{4}\right) O C$: Mass moment of cylinder with the hole.
$\rho \frac{\pi R^{2}}{4} \frac{R}{2}$: Mass moment of the hole.

$$
\frac{3 \pi}{4}(O C)=\frac{\pi R}{8} \Rightarrow O C=\frac{R}{6}
$$

Calculation of $\frac{1}{2} M\left|v_{C}\right|^{2}$
We know what \underline{r}_{C} is. \underline{r}_{C} is from point B to point C .

$$
\begin{aligned}
x_{C} & =R \theta-\frac{R}{6} \sin \theta \\
y_{C} & =R-\frac{R}{6} \cos \theta
\end{aligned}
$$

Differentiate:

$$
\begin{gathered}
\dot{x}_{C}=R \dot{\theta}-\frac{R}{6} \dot{\theta} \cos \theta \\
\dot{y}_{C}=\frac{R}{6} \dot{\theta} \sin \theta \\
\frac{1}{2} M v_{C}^{2}=\frac{1}{2}\left(\pi R^{2} \rho-\pi \frac{R^{2}}{4} \rho\right)\left(\dot{x}_{C}^{2}+\dot{y}_{C}^{2}\right) \\
=\frac{1}{2} \frac{3}{4} \pi R^{2} \rho\left(R^{2} \dot{\theta}^{2}+\frac{R^{2}}{36} \dot{\theta}^{2} \cos ^{2} \theta-\frac{R^{2} \dot{\theta}^{2}}{3} \cos \theta+\frac{R^{2} \dot{\theta}^{2}}{36} \sin ^{2} \theta\right) \\
\frac{1}{2} M v_{c}^{2}=\frac{1}{2} \frac{3}{4} \pi R^{4} \dot{\theta}^{2} \rho\left(1-\frac{1}{3} \cos \theta+\frac{1}{36}\right)
\end{gathered}
$$

Calculation of $\frac{1}{2} I_{C}|\underline{\underline{\omega}}|^{2}$

2 nd term of kinetic energy is $\frac{1}{2} I_{C}|\underline{\omega}|^{2}$.
What is I_{C} ?
We want to find $I_{C}^{c w h}$. cwh: cylinder with hole mc : missing cylinder cyl: cylinder

First find $I_{O}^{c w h}$ around O. Then shift to C with the Parallel-Axis Theorem.

$$
I_{O}^{c y l}=I_{O}^{c w h}+I_{O}^{m c}
$$

$$
\begin{gathered}
I_{O}^{c w h}=I_{O}^{c y l}-I_{O}^{m c} \\
I_{O}^{c y l}=\frac{1}{2} \rho \pi R^{2} R^{2} \\
I_{O}^{m c}=I_{A}^{m c}+M^{m c}(O A)^{2} \leftarrow \text { Parallel Axis Theorem } \\
=\frac{1}{2}\left(\rho \pi \frac{R^{2}}{4}\right) \frac{R^{2}}{4}+\left(\rho \pi \frac{R^{2}}{4}\right) \frac{R^{2}}{4} \\
=\frac{3}{32} \rho \pi R^{4} \\
I_{O}^{c w h}=\frac{1}{2} \rho \pi R^{4}-\frac{3}{32} \rho \pi R^{4}=\frac{13}{32} \rho \pi R^{4}
\end{gathered}
$$

Now:

$$
\begin{gathered}
I_{O}^{c w h}=I_{C}^{c w h}+M^{c w h}(O C)^{2} \leftarrow \text { Parallel Axis Theorem } \\
I_{C}^{c w h}=I_{O}^{c w h}-M^{c w h}(O C)^{2} \\
I_{C}^{c w h}=\frac{13}{32} \rho \pi R^{4}-\left(\rho \pi R^{2}-\rho \frac{\pi R^{2}}{4}\right) \frac{R^{2}}{36}=\frac{37}{96} \rho \pi R^{4}
\end{gathered}
$$

So we have that:

$$
\frac{1}{2} I_{C}|\underline{\omega}|^{2}=\frac{1}{2} \frac{37}{96} \rho \pi R^{4} \dot{\theta}^{2}
$$

$$
T+V=\frac{3}{8} \rho \pi R^{4} \dot{\theta}^{2}\left(\frac{37}{36}-\frac{1}{3} \cos \theta\right)+\frac{37}{192} \rho \pi R^{4} \dot{\theta}^{2}+V=\rho \pi R^{4} \dot{\theta}^{2}\left(\frac{37}{64}-\frac{1}{8} \cos \theta\right)+V
$$

Calculation of Potential Energy (V)

What is V ?

$$
V=m g h=\frac{3}{4} \pi R^{2} \rho\left(R-\frac{R}{6} \cos \theta\right)
$$

Finding Equation of Motion

So we have $T+V=$ Constant

$$
\frac{d}{d t}(T+V)=0
$$

Differentiate:

$$
2 \rho \pi R^{4} \dot{\theta} \ddot{\theta}\left(\frac{37}{64}-\frac{1}{8} \cos \theta\right)+\frac{1}{8} \rho \pi R^{4} \dot{\theta}^{2} \sin \theta \dot{\theta}+\frac{1}{8} \pi R^{3} \rho g \sin \theta \dot{\theta}=0
$$

Equation of motion: motion is complicated.

Alternative Approach: Using Angular Momentum (Sketch)

Angular momentum about moving point B.
B is not on cylinder. B is not on ground. B is contact point between ground and cylinder.

$$
\underline{\tau}_{B}=\frac{d}{d t} \underline{H}_{B}+\underline{v}_{B} \times \underline{P}
$$

$\underline{\tau}_{B}$: Torque due to gravity
$\underline{H}_{B}=\underline{H}_{C}+\underline{r}_{C}^{\prime} \times \underline{P}$
\underline{v}_{B} : Moving Point (R $\dot{\theta}$)
$\underline{P}=M \underline{v}_{C}$

1. Still have to find velocity and location of center of mass.
2. Still have to find I_{C}.
3. But, even more work because need to take torques.
