Lecture 9

2D Motion of Rigid Bodies: Kinetics, Poolball Example

Kinetics of Rigid Bodies

Angular Momentum Principle for a Rigid Body

Figure 1: Rigid Body rotating with angular velocity ω. Figure by MIT OCW.

$$
\underline{H}_{B}=\sum_{i} r_{i}^{\prime} \times m_{i}\left(\underline{v}_{c}+\underline{\omega} \times \underline{\rho}_{i}\right)
$$

After some steps (see Lecture 8):

$$
\underline{H}_{B}=\underline{r}_{c}^{\prime} \times \underline{P}+\sum_{i} m_{i} \underline{\rho}_{i} \times \underline{\omega} \times \underline{\rho}_{i}
$$

We now use:

$$
\begin{aligned}
\underline{a} \times \underline{b} \times \underline{c} & =(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} \\
\underline{\rho}_{i} \times \underline{\omega} \times \underline{\rho}_{i} & =\rho_{i}^{2} \underline{\omega}-\left(\underline{\omega} \cdot \underline{\rho}_{i}\right) \underline{\rho}_{i} \\
& =\rho_{i}^{2} \underline{\omega}
\end{aligned}
$$

For 2 -D motion, $\underline{\omega} \cdot \underline{\rho}_{i}=0$ because the vectors are \perp. For 3 -D, this term does not have to be 0 .

$$
\begin{aligned}
\underline{H}_{B} & =\underline{r}_{c}^{\prime} \times \underline{P}+\sum_{i} m_{i} \underline{\rho}_{i}^{2} \underline{\omega} \\
& =\underline{r}_{c}^{\prime} \times \underline{P}+I_{c} \underline{\omega}
\end{aligned}
$$

I_{c} : Moment of Inertia. $I_{c}=\sum_{i} m_{i} \rho_{i}^{2}$ (Intrinsic Property of Rigid Body)
Example:

Hoop Mass M

Disc Mass M Hoop has much larger moment of inertia because all the mass is concentrated in the rim and not distributed uniformly, as is the case of the disc..

Figure 2: Hoop and Disc, both with mass M. Figure by MIT OCW.

$$
\underline{H}_{B}=\underline{r}_{c}^{\prime} \times \underline{P}+I_{c} \underline{\omega}
$$

If one takes angular momentum about the center of mass:

$$
\underline{H}_{c}=I_{c} \underline{\omega}
$$

$($ Angular Momentum about B $)=($ Angular Momentum about C $)+($ Moment of Linear Momentum about B)

Therefore:

$$
\underline{H}_{B}=\underline{H}_{c}+\underline{r}_{c}^{\prime} \times \underline{P}
$$

Special Case of Fixed Axis of Rotation about B

i.e. $\underline{v}_{c}=\underline{v}_{B}+\underline{\omega} \times \underline{r}_{c}^{\prime}$

Body pivots about B .

Figure 3: Rigid body which pivots about B. Figure by MIT OCW.

$$
\begin{gathered}
\underline{H}_{B}=\underline{H}_{C}+r_{c}^{\prime} \times m\left(\underline{\omega} \times \underline{\underline{x}}_{c}^{\prime}\right) \\
=\underline{H}_{C}+m r_{C}^{\prime 2} \underline{\omega} \\
=\left(I_{C}+m r_{C}^{\prime 2}\right) \underline{\omega}=I_{B} \underline{\omega} \\
I_{B}=I_{C}+m r_{C}^{\prime 2} \quad \text { Parallel Axis Theorem } \\
\text { Only do this if the } \underline{v}_{B}=0 \text { and } \underline{v}_{C}=\left(\underline{\omega} \times r_{C}^{\prime}\right)
\end{gathered}
$$

Finally:

$$
\begin{align*}
\tau_{B}^{e x t} & =\frac{d}{d t} H_{B}+\underline{v}_{B} \times \underline{P} \tag{1}\\
\underline{H}_{B} & =\underline{H}_{C}+\underline{r}_{C}^{\prime} \times \underline{P} \tag{2}\\
\underline{\underline{H}}_{C} & =I_{C} \underline{\omega} \tag{3}\\
I_{C} & =\sum m_{i} \rho_{i}^{2} \tag{4}
\end{align*}
$$

Equations (11) to (4) are always true.

$\underline{\text { Special Cases }}$

1. $B=C \Rightarrow \underline{r}_{C}^{\prime}=0 ; \underline{v}_{B} \| \underline{P}$

Start by thinking about motion around center of mass.

$$
\tau_{B}^{e x t}=\frac{d}{d t} \underline{H}_{C} \text { and } \underline{H}_{C}=I_{C} \underline{\omega}
$$

2. B is a stationary point and fixed in the body.

$$
\tau_{B}^{e x t}=\frac{d}{d t} \underline{H}_{B} \text { and } \underline{H}_{B}=I_{B} \underline{\omega} \text { where } I_{B}=I_{C}+m r_{C}^{\prime 2}
$$

What do we need to do still?
Calculating moments of inertia \Rightarrow Recitation 5
Work-Energy Principle

Cue hitting a pool ball

A pool ball of radius R and mass M is at rest on a horizontal table. It is set in motion by a sharp horizontal impulse \underline{J} provided by the cue. Determine the height above the ball's center that the cue should strike so that the subsequent motion is rolling without slipping.

Figure 4: Cue ball diagram. Diagram shows cue ball when force if first applied and after being hit. Figure by MIT OCW.

Hit below h : Backspin
Hit above h : Top spin, carry on shot

Kinematics: Geometry with no forces

Horizontal Table: $y_{C}=$ constant $=R$
Rolling without slipping: $\underline{v}_{C}=\underline{\omega} R$ (or $x_{c}=R \theta$)
1 Degree of Freedom. (Use x_{C} or θ).

[^0]
Kinetics: Free Body Diagrams

Figure 5: Free Body Diagram of Cue Ball. Figure by MIT OCW.

Impulse force that provides impulse \underline{J}

$$
\underline{J}=\int_{0^{-}}^{0^{+}} \underline{F} d t=\int_{0^{-}}^{0^{+}} \underline{J} \delta(t) d t \text { i.e. } \underline{F}=\underline{J} \delta(t)
$$

(i) Linear Momentum Principle

$$
\underline{F}^{e x t}=\frac{d}{d t} \underline{P}
$$

y-direction: C always at same height. $N=m g$ so no vertical motion of C.
x-direction: $F=J \delta(t)=\frac{d}{d t} M v_{C}$.
Integrate both sides

$$
\begin{gathered}
\int_{0^{-}}^{0^{+}} F d t \int_{0^{-}}^{0^{+}} J \delta(t) d t=\int_{0^{-}}^{0^{+}} \frac{d}{d t} M v_{c} d t \\
J=M v_{c}\left(0^{+}\right)-M v_{c}\left(0^{-}\right)
\end{gathered}
$$

J : Momentum Imparted

$$
\begin{equation*}
J=M v_{C}\left(0^{+}\right) \tag{5}
\end{equation*}
$$

Angular Momentum Principle About C
Taking momentum about C simplifies equations

Figure 6: Angular Momentum Principle about C applied to Cue Ball. Figure by MIT OCW.

$$
\begin{gathered}
\underline{\tau}_{C}^{e x t}=\frac{d}{d t} \underline{H}_{c} \text { and } \underline{H}_{C}=I_{C} \underline{\omega} \\
\underline{r}_{F} \times \underline{F}=\frac{d}{d t} I_{C} \underline{\omega} \\
-F h \hat{e}_{z}=-I_{C} \frac{d \underline{\omega}}{d t} \hat{e}_{z} \\
\int_{0^{-}}^{0^{+}} \underline{F} h d t=\int_{0^{-}}^{0^{+}} I_{C} \frac{d \omega}{d t} d t \\
\int_{0^{-}}^{0^{+}} J \delta(t) d t=I_{C} \omega\left(0^{+}\right)-I_{C} \omega\left(0^{-}\right)
\end{gathered}
$$

$I_{C} \omega\left(0^{-}\right)=0$ because $\omega\left(0^{-}\right)=0$.

$$
J h=I_{C} \omega\left(0^{+}\right)
$$

Impulsive torque about center of mass $=$ Change of angular momentum caused by the torque

Satisfying Constraints

If there is no slip, one needs $\omega\left(0^{+}\right) R=v_{C}\left(0^{+}\right)$

Figure 7: Diagram of Cue Ball moving. This diagram demonstrates how to satisfy geometric constraints of movement. Figure by MIT OCW.

$$
\begin{equation*}
J=\frac{I_{C}}{h} \frac{v_{C}\left(0^{+}\right)}{R} \tag{6}
\end{equation*}
$$

Can eliminate J from Equation 5 and Equation 6 .

$$
M v_{C}\left(0^{+}\right)=\frac{I_{C}}{h} \frac{v_{C}\left(0^{+}\right)}{R} \Rightarrow h=\frac{I_{C}}{m R}
$$

For a sphere:

$$
I_{C}=\frac{2}{5} m R^{2} \Rightarrow h=\frac{2}{5} R
$$

h : Independent of mass of sphere. Independent of force applied.

[^0]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

