Lecture 4

Systems of Particles: Angular Momentum and Work Energy Principle

Systems of Particles

Angular Momentum (continued)

$$
\underline{\tau}_{B}^{e x t}=\frac{d}{d t} \underline{H}_{B}+\underline{v}_{B} \times \underline{P}
$$

$\mathcal{I}_{B}^{e x t}:$ Total External Torque
\underline{H}_{B} : Total Angular Momentum
\underline{P} : Total Linear Momentum
From now on, $\tau_{B}^{e x t}=\underline{\tau}_{B}$.
If $\underline{\tau}_{B}=0$ and $\underline{v}_{B}=0$ or if B is the center of mass or if $\underline{v}_{B} \| \underline{v}_{C}$ then $\underline{H}_{B}=$ constant (Conservation of Angular Momentum).

You may be familiar with $\underline{\tau}_{B}=\frac{d}{d t} \underline{H}_{B}$ (only valid if $\underline{v}_{B}=0$ or $\underline{v}_{B} \| \underline{P}$).
Angular momentum \underline{H}_{B} of a collection of particles about point B is given by:

$$
\underline{H}_{B}=\sum_{i=1}^{N} \underline{h}_{B_{i}}
$$

where $\underline{h}_{B_{i}}=\underline{r}_{i}^{\prime} \times m_{i} \underline{v}_{i}$.
If $\left(\underline{H}_{B}\right)$ is the sum of the angular momenta of the individual particles about point B ,

[^0]

Figure 1: Angular momentum about B for a system of particles. Each particle has mass m_{i} positions r_{i} with respect to the origin and r_{i}^{\prime} with respect to B. The center of mass C has positions r_{c}^{\prime} with respect to B and ρ_{i} with respect to each point mass m_{i}. Figure by MIT OCW.

$$
\begin{aligned}
\underline{H}_{B} & =\sum_{i=1}^{n} \underline{r}_{i}^{\prime} \times m_{i} \underline{v}_{i}=\sum_{i=1}^{n} \underline{r}_{i}^{\prime} \times m_{i} \underline{\underline{\dot{q}}}_{i}^{\prime} \\
& =\sum_{i=1}^{n}\left(\underline{r}_{c}^{\prime}+\underline{\rho}_{i}\right) \times m_{i} \underline{v}_{i} \\
& =\sum_{i=1}^{n}\left(\underline{r}_{c}^{\prime} \times m_{i} \underline{v}_{i}\right)+\sum_{i=1}^{n} \underline{\rho}_{i} \times m_{i} \underline{v}_{i} \\
& =\underline{r}_{c}^{\prime} \times M \underline{v}_{c}+\sum_{i=1}^{n} \underline{\rho}_{i} \times m_{i} \underline{v}_{i}
\end{aligned}
$$

where we have used $\sum m_{i} \underline{v}_{i}=M \underline{v}_{c}$
Therefore, we write:

$$
\underline{H}_{B}=\underline{H}_{C}+\underline{r}_{c}^{\prime} \times \underline{P}
$$

Notice that \underline{v}_{B} does not appear in this equation.
The angular momentum about B is the angular momentum about the center of mass (C) plus the moment of the system linear momentum $\left(M \underline{v}_{C}=\underline{P}\right)$ about B.

We will use these equations for rigid bodies. With rigid bodies will need to use moments of inertia.

[^1]
Work Energy Principle

$$
\begin{gathered}
W_{12}=\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} \underline{F}_{i} \cdot d \underline{r}_{i}=\sum_{i=1}^{n} \int_{t_{1}}^{t_{2}} \frac{d}{d t} \underline{p}_{i} \cdot \underline{v}_{i} d t=\int_{t_{1}}^{t_{2}} \sum_{i=1}^{n} \frac{d}{d t}\left[\frac{1}{2} m_{i}\left(\underline{v}_{i} \cdot \underline{v}_{i}\right)\right] d t \\
=T_{2}-T_{1}
\end{gathered}
$$

where:

$$
\begin{gathered}
T=\sum_{i=1}^{n} \frac{1}{2} m_{i}\left(\underline{v}_{i} \cdot \underline{v}_{i}\right) \\
W_{12}=\sum_{i=1}^{n}\left(W_{12}\right)_{i}=\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} F_{i} \cdot d \underline{r}_{i} \\
=\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} \underline{F}_{i}^{i n t} \cdot d \underline{r}_{i}+\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} \underline{F}_{i}^{e x t} \cdot d \underline{r}_{i}
\end{gathered}
$$

$\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} \underline{F}_{i}^{i n t} \cdot d \underline{r}_{i}=W_{12}^{i n t}$
$\sum_{i=1}^{n} \int_{\underline{r}_{1 i}}^{\underline{r}_{2 i}} \underline{F}_{i}^{e x t} \cdot d \underline{r}_{i}=W_{12}^{e x t}$

$$
\begin{aligned}
W_{12}^{i n t} & =\sum_{i=1}^{n} \int_{t_{1}}^{t_{2}} \underline{F}_{i}^{i n t} \cdot \underline{v}_{i} d t \\
& =\sum_{i=1}^{n} \int_{t_{1}}^{t_{2}} \sum_{\substack{j=1 \\
j \neq 1}}^{n} f_{i j} \cdot \underline{v}_{i} d t \\
& =\int_{t_{1}}^{t_{2}} \sum_{i=1}^{n} \sum_{j>1}^{n}\left(\underline{f}_{i j} \cdot \underline{v}_{i}+\underline{f}_{j i} \cdot \underline{v}_{j}\right) d t \\
W_{12}^{i n t} & =\int_{t_{1}}^{t_{2}} \sum_{i=1}^{n} \sum_{j>1}^{n} \underline{f}_{i j} \cdot\left(\underline{v}_{i}-\underline{v}_{j}\right) d t
\end{aligned}
$$

This is non-zero in general.

Figure 2: Relative velocity probably has a component in the direction of $\underline{f}_{i j}$. The figure shows two random points with randomly chosen velocities. Unless the difference between the velocities of the two points is zero or perpendicular to the direction of force $\underline{f}_{i j}, \underline{f}_{i j} \cdot\left(\underline{v}_{i}-\underline{v}_{j}\right)$ will not be zero; there would be some component in the direction of $\underline{f}_{i j}$. Figure by MIT OCW.

No reason that difference between velocities should not have a component in the direction of $\underline{f}_{i j}$.
If particles are parts of a rigid body system, then there is no relative motion in the direction of $\underline{f}_{i j}$ (e.g.)

Figure 3: Two point masses connected by a rod. This is an example of a rigid body where due to the rod, there is no relative motion of the two point masses at each end when the rigid body moves. Figure by MIT OCW.

$$
\begin{gathered}
\frac{d}{d t}\left|\underline{r}_{i}-\underline{r}_{j}\right|^{2}=0 \\
\frac{d}{d t}\left[\left(\underline{r}_{i}-\underline{r}_{j}\right) \cdot\left(\underline{r}_{i}-\underline{r}_{j}\right)\right]=0 \\
2\left(\underline{r}_{i}-\underline{r}_{j}\right) \cdot\left(\underline{v}_{i}-\underline{v}_{j}\right)=0
\end{gathered}
$$

Internal forces $\underline{f}_{i j}$ are along the direction $\left(\underline{r}_{i}-\underline{r}_{j}\right)$.
$\underline{f}_{i j} \cdot\left(\underline{v}_{i}-\underline{v}_{j}\right)=0$.
Therefore, for a rigid body system we have proved:

$$
\underline{f}_{i j} \cdot\left(\underline{v}_{i}-\underline{v}_{j}\right)=0
$$

Therefore, $W_{12}^{\text {int }}$ must be 0 (or if you show that internal forces do no work).
Thus,

$$
W_{12}^{\text {ext }}=T_{2}-T_{1}
$$

More generally:

$$
W_{12}^{e x t}+W_{12}^{i n t}=T_{2}-T_{1}
$$

If all external forces are potential forces or the ones who are external do no work and $W_{12}^{\text {int }}=0$,

$$
W_{12}=W_{12}^{e x t}=V_{1}^{e x t}-V_{2}^{e x t}
$$

$V=$ potential work where $V^{e x t}=\sum_{i=1}^{n} V_{i}^{e x t} . V_{i}^{e x t}$ is the external force potential of particle i.

$$
T_{1}+V_{1}^{\text {ext }}=T_{2}+V_{2}^{\text {ext }}
$$

Examples

Example 1

How does l affect the motion? How does θ affect the motion?

No rotations involved. Probably will not need angular momentum.

Kinematics

Describe the motion (kinematics) without forces
Knowing the location of A is equivalent to knowing the location of the center of mass of M.

$$
\begin{array}{cc}
& \underline{v}_{C}=\underline{v}_{A} \\
\mathrm{M} & \mathrm{~m} \\
\underline{r}_{A}=x \hat{\imath} & \underline{r}_{B}=x \hat{\imath}+s \hat{e} \hat{r}_{s}=x \hat{\imath}+s \cos \theta \hat{\imath}+s \sin \theta \hat{\jmath} \\
\underline{\underline{r}}_{A}=\dot{x} \hat{\imath} & \underline{\dot{r}}_{B}=\dot{x} \hat{\imath}+\dot{s} \cos \theta \hat{\imath}+\dot{s} \sin \theta \hat{\jmath} \\
\ddot{r}_{A}=\ddot{x} \hat{\imath} & \underline{\ddot{r}_{B}}=\ddot{x} \hat{\imath}+\ddot{s} \cos \theta \hat{\imath}+\ddot{s} \sin \theta \hat{\jmath}
\end{array}
$$

Note: Generalized coordinates. $\hat{\imath}$ and \hat{e}_{s} are not \perp.
Important to define coordinates.

Frictionless Road

Figure 4: Block on frictionless surface that moves on frictionless road. The mass (m) can slide down the incline in a frictionless manner. Mass (M) is free to move horizontally without friction. If mass (m) is released from rest at the l position, find the velocity of mass (M) at the moment (m) reaches the bottom of the incline. Figure by MIT OCW.

Figure 5: Diagram of kinematics of block on ramp. Need two sets of coordinates. M only moves in the x-direction. m only moves in the \hat{e}_{s} direction. Figure by MIT OCW.

[^0]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

[^1]: Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

