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1 Example 2: Particle on String Pulled Through Hole 

2.003J/1.053J Dynamics and Control I, Spring 2007

Professor Thomas Peacock


2/14/2007


Lecture 3 

Dynamics of a Single Particle: Angular

Momentum


Example 2: Particle on String Pulled Through

Hole


Figure 1: Particle on string pulled through hole. Tabletop with hole B. A string 
comes out with an attached mass. The particle is traveling around with an 
angular velocity θ̇. Figure by MIT OCW. 

Assume: Frictionless surface. Inextensible String. 

Pull string through hole at B such that: 

dr r(t0) = L dt (t0) = 0

r(t1) = L/2 dr
(t1) = 0 dt 

If θ̇(t0) = θ̇  
0, what is θ̇(t1) = θ̇  

1? 
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2 Dynamics of systems of particles 

Discussion 

If we use linear momentum, will need to describe forces between m and string. 
Thinking about angular momentum about the point B: 

τ B = ḣB + vB × mv ← Angular momentum principle 

hB = r × mv = Angular Momentum 

Now: 

τ B = r × F ← Forces acting on particleτB = 0 because r � F 

τB = ḣB + vB × mv ⇒ Angular momentum about B is constant ḣB = 0. 

τ B = 0 (from above)


vB = 0 because B is not moving


∴ hB = Constant


In Cartesian Coordinates 

ı + r sin θĵ

r = −mrθ̇ sin θı̂ + mrθ̇ cos θĵ

a. hB (t0) = r × p = LmLθ̇  
0k̂(k̂ is unit vector in z-direction: out of page). 

r = r cos θˆ

p = mv = m ̇

b. hB (t1) = L 
2 m L 

2 θ̇
 
1k̂


Setting (a) = (b): θ̇  
1 = 4θ̇  

0, and velocity of particle v1 = 2v0 = L 
2 4θ̇  

0 = 2Lθ̇  
0.


Energy is not conserved: why? The pulling force (tension) does work.


Dynamics of systems of particles 

Forces on each particle may be composed as follows


= F ext + F int F i i i 



� 

� � � 

� 

3 Dynamics of systems of particles 

Figure 2: Dynamics of systems of particles. Figure by MIT OCW. 

Fi: Resultant force acting on mi


F ext : External forces (e.g. gravity)
i 
F int : Internal forces between particles (e.g. charge attraction) i


n


F int 
i = f Force on particle i due to particle j 

ij 
j=1 

Newton’s Third Law 

Thus: 

f 
ij 

= −f 
ji 

n n n 

F int 
i = f = 0 

ij 
i=1 i=1	 j=1 

j �=i 

Sum of all internal forces is zero, therefore: 

n 

F int = 0 i 
i=1 

Total internal torques is also zero: demonstrate by considering an arbitrary pair 
of particles: 
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4 Dynamics of systems of particles 

Figure 3: Arbitrary pair of particles subject to individual forces. Figure by MIT 
OCW. 

τB = ri/B × f 
ij 

+ rj/B × f 
ji 

= (ri/B − rj/B ) × f 
ij


but (ri/B − rj/B � f 
ij 

)


∴ τ int = 0 No net internal torque
B 

Center of mass 

n �n 
i=1 miri i=1 miri r = 

�
� = c n 

mi Mi=1 

M : Total Mass of System 

Note that this relation can also be written as 
�

i
n 
=1 mi(ri − rc) = 0 i.e. center 

of mass is the point about which the total mass moment is zero. 

Newton’s Laws for Systems of Particles 

(Williams: C-1 to C-3.6)

Derivation needed to prevent mistakes in applying the laws later. Will be able

to use results for rigid bodies.
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5 Dynamics of systems of particles 

Linear Momentum Principle (for a single particle) 

d 
F i = p

dt i 

F i: Total Force on particle i 
: Linear momentum of particle i 

i

n n n 

p

d d 
F ext +i F int 

i = p = p
idt dt 

i=1 i=1 i=1 

F int = 0 i 

d 
F ext = p

dt 

F ext: Sum of F external for whole system. 
Note that total linear momentum: 

n n n
d miri 

M
pi =

� 

i=1 

mivi = Mv where v = ṙcp = = c c dt 
i=1 i=1 

n 
i=1 

Example: You have a ball as a ice skater. Throw object, both ball and skater 
move, but center of mass stays the same, does not move. 

Angular Momentum Principle 

From Newton II F i = d 
dt pi 

Torque: 

d 
ri × F i = ri × p

dt i 

Sum over all particles. 

n 

F ext = F ext 
iIf = 0 ⇒ p =constant; therefore, vc =constant. 

d 
× F ext 

i = i ×r r p
idt 

i=1 i=1 

Later will need vectors to center of mass. 

n 

τext 
iB 

= Sum of all external torques about B 
i=1 
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6 Dynamics of systems of particles 

Figure 4: A system of particles subject to a force. Figure by MIT OCW. 

n n n n 
d d d� 

i=1 

τ ext 
iB 

= p = 
i 

(ri × p ) − 
i

( ri)p×r 
idt dt dt 

i=1 i=1 i=1 

n n n 

τ ext 
iB 

= 
d 
dt 

hiB 
− 

d 
(ri − rB ) × p

idt 
i=1 i=1 i=1 

n n
d 

τext = B HB − vi × p + 
i 

vB × p
idt 

i=1 i=1 

vB is the same for each p . 
i 

n n 

vB × p = vB × 
i 

p = vB × p
i 

i=1 i=1 

So, finally we have: 

d 
τ ext = HB + vB × PB dt 

τ ext : Total External Torque B 
d HB : Total Angular Momentum dt 
vB × p: Total Linear Momentum 

Next time: Consequences of this expression and work-energy principle. 


