Lecture 3

Dynamics of a Single Particle: Angular Momentum

Example 2: Particle on String Pulled Through Hole

Figure 1: Particle on string pulled through hole. Tabletop with hole B. A string comes out with an attached mass. The particle is traveling around with an angular velocity $\dot{\theta}$. Figure by MIT OCW.

Assume: Frictionless surface. Inextensible String.
Pull string through hole at B such that:

$$
\begin{array}{cl}
r\left(t_{0}\right)=L & \frac{d r}{d t}\left(t_{0}\right)=0 \\
r\left(t_{1}\right)=L / 2 & \frac{d r}{d t}\left(t_{1}\right)=0
\end{array}
$$

If $\dot{\theta}\left(t_{0}\right)=\dot{\theta_{0}}$, what is $\dot{\theta}\left(t_{1}\right)=\dot{\theta_{1}}$?

Discussion

If we use linear momentum, will need to describe forces between m and string. Thinking about angular momentum about the point B:

$$
\begin{gathered}
\underline{\tau}_{B}=\underline{\dot{h}}_{B}+\underline{v}_{B} \times m \underline{v} \leftarrow \text { Angular momentum principle } \\
\underline{h}_{B}=\underline{r} \times m \underline{v}=\text { Angular Momentum }
\end{gathered}
$$

Now:

$$
\underline{\tau}_{B}=\underline{r} \times \underline{F} \leftarrow \text { Forces acting on particle } \tau_{B}=0 \text { because } \underline{r} \| \underline{F}
$$

$\tau_{B}=\underline{\underline{\dot{h}}}_{B}+\underline{v}_{B} \times m \underline{v} \Rightarrow$ Angular momentum about B is constant $\underline{\dot{\dot{q}}}_{B}=\underline{0}$.

$$
\begin{gathered}
\underline{\tau}_{B}=0(\text { from above }) \\
\underline{v}_{B}=0 \text { because B is not moving } \\
\therefore h_{B}=\text { Constant }
\end{gathered}
$$

In Cartesian Coordinates

$$
\begin{gathered}
\underline{r}=r \cos \theta \hat{\imath}+r \sin \theta \hat{\jmath} \\
\underline{p}=m \underline{v}=m \underline{\dot{r}}=-m r \dot{\theta} \sin \theta \hat{\imath}+m r \dot{\theta} \cos \theta \hat{\jmath}
\end{gathered}
$$

a. $\underline{h}_{B}\left(t_{0}\right)=\underline{r} \times \underline{p}=\operatorname{LmL} \dot{\theta_{0}} \hat{k}(\hat{k}$ is unit vector in z-direction: out of page).
b. $\underline{h}_{B}\left(t_{1}\right)=\frac{L}{2} m \frac{L}{2} \dot{\theta_{1}} \hat{k}$

Setting $(\mathrm{a})=(\mathrm{b}): \dot{\theta_{1}}=4 \dot{\theta_{0}}$, and velocity of particle $v_{1}=2 v_{0}=\frac{L}{2} 4 \dot{\theta_{0}}=2 L \dot{\theta_{0}}$.
Energy is not conserved: why? The pulling force (tension) does work.

Dynamics of systems of particles

Forces on each particle may be composed as follows

$$
\underline{F}_{i}=\underline{F}_{i}^{e x t}+\underline{F}_{i}^{i n t}
$$

Figure 2: Dynamics of systems of particles. Figure by MIT OCW.
F_{i} : Resultant force acting on m_{i}
$F_{i}^{e x t}$: External forces (e.g. gravity)
$F_{i}^{\text {int }}$: Internal forces between particles (e.g. charge attraction)

$$
\underline{F}_{i}^{i n t}=\sum_{j=1}^{n} \underline{f}_{i j} \text { Force on particle } \mathrm{i} \text { due to particle } \mathrm{j}
$$

Newton's Third Law

$$
\underline{f}_{i j}=-\underline{f}_{j i}
$$

Thus:

$$
\sum_{i=1}^{n} \underline{F}_{i}^{i n t}=\sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} \underline{f}_{i j}=0
$$

Sum of all internal forces is zero, therefore:

$$
\sum_{i=1}^{n} F_{i}^{i n t}=0
$$

Total internal torques is also zero: demonstrate by considering an arbitrary pair of particles:

Figure 3: Arbitrary pair of particles subject to individual forces. Figure by MIT OCW.

$$
\begin{gathered}
\underline{\tau}_{B}=\underline{r}_{i / B} \times \underline{f}_{i j}+\underline{r}_{j / B} \times \underline{f}_{j i}=\left(\underline{r}_{i / B}-\underline{r}_{j / B}\right) \times \underline{f}_{i j} \\
\operatorname{but}\left(\underline{r}_{i / B}-\underline{r}_{j / B} \| \underline{f}_{i j}\right) \\
\therefore \underline{\tau}_{B}^{i n t}=0 \text { No net internal torque }
\end{gathered}
$$

Center of mass

$$
\underline{r}_{c}=\frac{\sum_{i=1}^{n} m_{i} \underline{\underline{r}}_{i}}{\sum_{i=1}^{n} m_{i}}=\frac{\sum_{i=1}^{n} m_{i} \underline{\underline{r}}_{i}}{M}
$$

M: Total Mass of System
Note that this relation can also be written as $\sum_{i=1}^{n} m_{i}\left(\underline{r}_{i}-\underline{r}_{c}\right)=0$ i.e. center of mass is the point about which the total mass moment is zero.

Newton's Laws for Systems of Particles

(Williams: C-1 to C-3.6)
Derivation needed to prevent mistakes in applying the laws later. Will be able to use results for rigid bodies.

Linear Momentum Principle (for a single particle)

$$
\underline{F}_{i}=\frac{d}{d t} \underline{p}_{i}
$$

\underline{F}_{i} : Total Force on particle i
\underline{p}_{i} : Linear momentum of particle i

$$
\sum_{i=1}^{n} \underline{F}_{i}^{e x t}+\sum_{i=1}^{n} \underline{F}_{i}^{i n t}=\frac{d}{d t} \sum_{i=1}^{n} \underline{p}_{i}=\frac{d}{d t} \underline{p}
$$

$$
\underline{F}_{i}^{i n t}=0
$$

$$
\underline{F}^{e x t}=\frac{d}{d t} \underline{p}
$$

$\underline{F}^{e x t}$: Sum of F external for whole system.
Note that total linear momentum:

$$
\underline{p}=\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} m_{i} v_{i}=M \underline{v}_{c} \text { where } \underline{v}_{c}=\dot{r}_{c}=\frac{d}{d t} \sum_{i=1}^{n} \frac{m_{i} r_{i}}{M}
$$

If $\sum_{i=1}^{n} \underline{F}_{i}^{e x t}=\underline{F}^{e x t}=0 \Rightarrow \underline{p}=$ constant; therefore, $\underline{v}_{c}=$ constant.
Example: You have a ball as a ice skater. Throw object, both ball and skater move, but center of mass stays the same, does not move.

Angular Momentum Principle

From Newton II $\underline{F}_{i}=\frac{d}{d t} p_{i}$
Torque:

$$
\underline{r}_{i}^{\prime} \times \underline{F}_{i}=\underline{r}_{i}^{\prime} \times \frac{d}{d t} \underline{p}_{i}
$$

Sum over all particles.

$$
\sum_{i=1}^{n} \underline{r}^{\prime} \times \underline{F}_{i}^{e x t}=\sum_{i=1} \underline{r}_{i}^{\prime} \times \frac{d}{d t} \underline{p}_{i}
$$

Later will need vectors to center of mass.

$$
\sum_{i=1}^{n} \underline{\tau}_{i_{B}}^{e x t}=\text { Sum of all external torques about B }
$$

Figure 4: A system of particles subject to a force. Figure by MIT OCW.

$$
\begin{gathered}
\sum_{i=1}^{n} \underline{\tau}_{i_{B}}^{e x t}=\sum_{i=1}^{n} \underline{r}^{\prime} \times \frac{d}{d t} \underline{p}_{i}=\sum_{i=1}^{n} \frac{d}{d t}\left(\underline{r}_{i}^{\prime} \times \underline{p}_{i}\right)-\sum_{i=1}^{n}\left(\frac{d}{d t} \underline{r}_{i}^{\prime}\right) \underline{p}_{i} \\
\sum_{i=1}^{n} \underline{\underline{L}}_{i_{B}}^{e x t}=\frac{d}{d t} \sum_{i=1}^{n} \underline{h}_{i_{B}}-\sum_{i=1}^{n} \frac{d}{d t}\left(\underline{r}_{i}-\underline{r}_{B}\right) \times \underline{p}_{i} \\
\tau_{B}^{e x t}=\frac{d}{d t} \underline{H}_{B}-\sum_{i=1}^{n} \underline{v}_{i} \times \underline{p}_{i}+\sum_{i=1}^{n} \underline{v}_{B} \times \underline{p}_{i}
\end{gathered}
$$

\underline{v}_{B} is the same for each \underline{p}_{i}.

$$
\sum_{i=1}^{n} \underline{v}_{B} \times \underline{p}_{i}=\underline{v}_{B} \times \sum_{i=1}^{n} \underline{p}_{i}=\underline{v}_{B} \times \underline{p}
$$

So, finally we have:

$$
\underline{\tau}_{B}^{e x t}=\frac{d}{d t} \underline{H}_{B}+\underline{v}_{B} \times \underline{P}
$$

$\mathcal{I}_{B}^{e x t}$: Total External Torque
$\frac{d}{d t} \underline{H}_{B}$: Total Angular Momentum
$\underline{v}_{B} \times \underline{p}$: Total Linear Momentum
Next time: Consequences of this expression and work-energy principle.

