10 pts 1. A mass m slides without friction along a horizontal guide as shown in figure 1. Motion is restrained by a linear spring of stiffness k and unstretched length $L / 2$. Determine the equation of motion for the mass using its horizontal displacement x as a generalized coordinate.

Figure 1:
2. A uniform rod of length L and mass m_{2} is attached by way of a frictionless pin to a sliding collar of mass m_{1} (figure 2). The collar slides without friction on a horizontal guide and is further restrained by two identical springs of stiffness $k / 2(x$ is the extension/compression of the left/right springs respectively). A force of magnitude F is applied to the rod in such a way that it is always perpendicular to the rod. Derive the equations of motion.

Figure 2:

10 pts 3. A uniform rod of length L and mass m_{1} is attached to a cart of mass m_{2} by means of a spring with spring constant k (figure 3). There is a constant force F that is always applied perpendicular to the free end. The nonlinear equations of motion for this system in terms of the generalized coordinates θ and x are:

$$
\begin{gather*}
\theta: I_{0} \ddot{\theta}+m_{1} g \frac{L}{2} \sin \theta-k \frac{L}{2} \cos \theta\left(x-\frac{L}{2} \sin \theta\right)=F L \tag{7}\\
\mathbf{x}: m_{2} \ddot{x}+k\left(x-\frac{L}{2} \sin \theta\right)=0 \tag{8}
\end{gather*}
$$

Identify the equilibria and derive the linearized equations for small perturbations about the equilibria (you do not have to solve these equations).

Figure 3:

