Massachusetts Institute of Technology Department of Mechanical Engineering

2.003J/1.053J Dynamics & Control I

Fall 2007

Homework 2

Issued: Sep. 14. 2007

Due: Sep. 21. 2007

Problem 2.1: Matrix creation with loop

- i) Create a 5×5 matrix in which each element has a value equal to the sum of its row and column numbers.
- ii) Create a 5×5 matrix in which each element has a value equal to the square of the sum of the element's row and column numbers.

Problem 2.2 : Matrix creation with conditional

Make a one dimensional array that contains all integers in the range of 1 to 100 that are not divisible by 2, 3, and 7.

Problem 2.3 : Velocity and acceleration profile calculation from the ball trajectory

Use the same trajectory file, 'ball.mat' from the last homework. Time(t) and trajectory(x) are from the first and the second columns, respectively. Write an m-file to calculate the ball's velocity and acceleration in two different ways. You should follow the below guidelines to make m-file. (Otherwise, you may lose point.)

- You should submit **only** m-file through the MIT Server site.
- Your m-file name should be 'HW023_your_Kerberos_name' (For example, it should be 'HW023_ptso.m' with e-mail address of ptso@mit.edu)
- In the first line of m-file, `function [v1,a1,v2,a2,t]=HW023' should be added.
- You can also start by downloading and using the template m-file from the MIT Server site (HW023.m)

i) Write a "for" loop and calculate the difference between adjacent points. For examples,

$$v(i) \approx \frac{x(i+1) - x(i)}{t(i+1) - t(i)}$$

Velocity and acceleration should be assigned to the variables `v1' and `a1' respectively.

ii) Use the MATLAB function `diff'. Velocity and acceleration should be assigned to the variables `v2' and `a2' respectively.

Is this neighboring point approach good in the presence of noise? Explain it.