Massachusetts Institute of Technology
 Department of Mechanical Engineering

2.003J/1.053J Dynamics \& Control I

Fall 2007
Homework 2
Issued: Sep. 14. 2007
Due: Sep. 21. 2007

Problem 2.1 : Matrix creation with loop

i) Create a 5×5 matrix in which each element has a value equal to the sum of its row and column numbers.
ii) Create a 5×5 matrix in which each element has a value equal to the square of the sum of the element's row and column numbers.

Problem 2.2: Matrix creation with conditional

Make a one dimensional array that contains all integers in the range of 1 to 100 that are not divisible by 2,3 , and 7 .

Problem 2.3 : Velocity and acceleration profile calculation from the ball trajectory

Use the same trajectory file, 'ball.mat' from the last homework. Time(t) and trajectory $(\mathrm{x}$) are from the first and the second columns, respectively. Write an m-file to calculate the ball's velocity and acceleration in two different ways. You should follow the below guidelines to make m-file. (Otherwise, you may lose point.)

- You should submit only m-file through the MIT Server site.
- Your m-file name should be 'HW023_your_Kerberos_name' (For example, it should be " HW023_ptso.m' with e-mail address of ptso@mit.edu)
- In the first line of m-file, 'function [v1,a1, v2, a2, t]=HW023' should be added.
- You can also start by downloading and using the template m-file from the MIT Server site (HW023.m)
i) Write a "for" loop and calculate the difference between adjacent points. For examples,

$$
v(i) \approx \frac{x(i+1)-x(i)}{t(i+1)-t(i)}
$$

Velocity and acceleration should be assigned to the variables 'v1' and 'a1' respectively.
ii) Use the MATLAB function 'diff'. Velocity and acceleration should be assigned to the variables 'v2' and ' a 2 ' respectively.

Is this neighboring point approach good in the presence of noise? Explain it.

