1.053J/2.003J Dynamics and Control I Fall 2006

Exam 2

$20^{\text {th }}$ November, 2006

Important Notes:

1. You are allowed to use two letter-size sheets (two-sides) of notes.
2. There are three problems on the exam. You have 80 minutes to solve them.
3. Each problem carries equal weight: 20 points.

1. Problem 1 (20 Points)

(a)

(b)

Figure 1
Two blocks of masses m_{1} and m_{2} are connected by a spring with a spring constant k and are free to slide on a horizontal surface as shown in Figure 1(a). The drag between each mass and the surface can be modeled as viscous damping with a dashpot constant c as shown in Figure 1(b). Initially the masses are at rest and the spring is un-stretched. At t $=0$, a horizontal force F is applied to mass m_{2}. Derive the equation(s) of motion for this system.

2. Problem 2 (20 Points)

Figure 2

A block of mass m_{2} with a semi-circular well of radius R is free to slide on a horizontal surface with no friction as shown in Figure 2. Before $t=0$, the block is at rest and a point mass m_{1} is held at the tip of the well. At $t=0$, the point mass m_{1} is released and both the masses are free to move thereafter. Derive the equation(s) of motion for this system.

Hint: Start by picking the generalized coordinates. List your steps.

3. Problem 3 (20 Points)

Figure 3

A disc of mass m and radius r is sandwiched between a horizontal surface and a slender rod of mass m which can slide in and out of a horizontal groove without friction as shown in Figure 3. The disc rolls without slippage with respect to both the horizontal bottom as well as the rod. The rod is connected to a spring of a spring constant k as shown in the figure, and the other end of the spring is attached to the inertial frame. Assume some length L_{0} of the un-stretched spring - although that will turn out to be irrelevant to the problem. The rod is pulled out the groove such that the spring is stretched by some length and then released.
a. Show that at any instant the velocity of the rod with respect to a frame fixed to the ground is twice the velocity of the center of the disc with respect to the same frame.
b. Derive the equation(s) of motion for this system.

