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Complex Numbers 

• Complex numbers have both real and imaginary components. A complex 
number r may be expressed in Cartesian or Polar forms: 

r	 = a + jb (cartesian) 
= |r|e φ (polar) 

The following relationships convert from cartesian to polar forms: 

2Magnitude |r| =	
�

a2 + b� 
tan−1 b a > 0 aAngle φ = 
tan−1 b a < 0 a ± π 

• Complex numbers can be plotted on the complex plane in either 
Cartesian or Polar forms Fig.1. 

Figure 1: Complex plane plots: Cartesian and Polar forms 

Euler’s Identity 

Euler’s Identity states that 

ejφ = cos φ + j sin φ 
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This can be shown by taking the series expansion of sin, cos, and e.


sin φ = φ − 
φ3 

3! 
+ 

φ5 

5! 
− 

φ7 

7! 
+ ... 

cos φ = 1 − 
φ2 

2! 
+ 

φ4 

4! 
− 

φ6 

6! 
+ ... 

ejφ = 1 + jφ − 
φ2 

2! 
− j 

φ3 

3! 
+ 

φ4 

4! 
+ j 

φ5 

5! 
+ ... 

Combining 

cos φ + j sin φ = 1 + jφ − 
(φ)2 

2! 
− j 

φ3 

3! 
+ 

φ4 

4! 
+ j 

φ5 

5! 
+ ... 

= ejφ 

Complex Exponentials 

Consider the case where φ becomes a function of time increasing at a • 
constant rate ω 

φ(t) = ωt. 

then r(t) becomes 

jωt r(t) = e

Plotting r(t) on the complex plane traces out a circle with a constant 
radius = 1 (Fig. 2 ). Plotting the real and imaginary components of r(t) 
vs time (Fig. 3 ), we see that the real component is Re{r(t)} = cos ωt 
while the imaginary component is Im{r(t)} = sin ωt. 

Consider the variable r(t) which is defined as follows: • 

st r(t) = e 

where s is a complex number 

s = σ + jω 
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Figure 2: Complex plane plots: ) = jωt 

Figure 3: Real and imaginary components of r(t) vs time 

• What path does r(t) trace out in the complex plane ? Consider 

st = e(σ+jω)t = e σt jωt r(t) = e	 e· 

One can look at this as a time varying magnitude (eσt) multiplying a point 
rotating on the unit circle at frequency ω via the function ejωt . Plotting 
just the magnitude of ejωt vs time shows that there are three distinct 
regions (Fig. 4 ): 

1.	 σ > 0 where the magnitude grows without bounds. This condition is 
unstable. 

2.	 σ = 0 where the magnitude remains constant. This condition is 
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called marginally stable since the magnitude does not grow without 
bound but does not converge to zero. 

3.	 σ < 0 where the magnitude converges to zero. This condition is 
termed stable since the system response goes to zero as t →∞ . 

Figure 4: Magnitude r(t) for various σ. 

Effect of Pole Position 

The stability of a system is determined by the location of the system poles. 
If a pole is located in the 2nd or 3rd quadrant (which quadrant determines 
the direction of rotation in the polar plot), the pole is said to be stable. 
Figure 5 shows the pole position in the complex plane, the trajectory of 
r(t) in the complex plane, and the real component of the time response for 
a stable pole. 
If the pole is located directly on the imaginary axis, the pole is said to be 
marginally stable. Figure 6 shows the pole position in the complex plane, 
the trajectory of r(t) in the complex plane, and the real component of the 
time response for a marginally stable pole. 
Lastly, if a pole is located in either the 1st or 4th quadrant, the pole is said 
to be unstable. Figure 7 shows the pole position in the complex plane, the 
trajectory of r(t) in the complex plane, and the real component of the time 
response for an unstable pole. 
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Figure 5: Pole position, ), and real time response for stable pole. 

Figure 6: Pole position, ), and real time response for marginally stable 
pole. 

Figure 7: Pole position, r(t), and real time response for unstable pole.
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