Complex Numbers

- Complex numbers have both real and imaginary components. A complex number \underline{r} may be expressed in Cartesian or Polar forms:

$$
\begin{aligned}
\underline{r} & =a+j b(\text { cartesian }) \\
& =|r| e^{\phi}(\text { polar })
\end{aligned}
$$

The following relationships convert from cartesian to polar forms:

$$
\begin{aligned}
\text { Magnitude }|r| & =\sqrt{a^{2}+b^{2}} \\
\text { Angle } \phi & = \begin{cases}\tan ^{-1} \frac{b}{a} & a>0 \\
\tan ^{-1} \frac{b}{a} \pm \pi & a<0\end{cases}
\end{aligned}
$$

- Complex numbers can be plotted on the complex plane in either Cartesian or Polar forms Fig.1.

Figure 1: Complex plane plots: Cartesian and Polar forms

Euler's Identity

Euler's Identity states that

$$
e^{j \phi}=\cos \phi+j \sin \phi
$$

This can be shown by taking the series expansion of \sin , \cos, and e.

$$
\begin{aligned}
\sin \phi & =\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\frac{\phi^{7}}{7!}+\ldots \\
\cos \phi & =1-\frac{\phi^{2}}{2!}+\frac{\phi^{4}}{4!}-\frac{\phi^{6}}{6!}+\ldots \\
e^{j \phi} & =1+j \phi-\frac{\phi^{2}}{2!}-j \frac{\phi^{3}}{3!}+\frac{\phi^{4}}{4!}+j \frac{\phi^{5}}{5!}+\ldots
\end{aligned}
$$

Combining

$$
\begin{aligned}
\cos \phi+j \sin \phi & =1+j \phi-\frac{(\phi)^{2}}{2!}-j \frac{\phi^{3}}{3!}+\frac{\phi^{4}}{4!}+j \frac{\phi^{5}}{5!}+\ldots \\
& =e^{j \phi}
\end{aligned}
$$

Complex Exponentials

- Consider the case where ϕ becomes a function of time increasing at a constant rate ω

$$
\phi(t)=\omega t
$$

then $\underline{r}(t)$ becomes

$$
\underline{r}(t)=e^{j \omega t}
$$

Plotting $\underline{r}(t)$ on the complex plane traces out a circle with a constant radius $=1$ (Fig. 2). Plotting the real and imaginary components of $\underline{r}(t)$ vs time (Fig. 3), we see that the real component is $\operatorname{Re}\{\underline{r}(t)\}=\cos \omega t$ while the imaginary component is $\operatorname{Im}\{\underline{r}(t)\}=\sin \omega t$.

- Consider the variable $\underline{r}(t)$ which is defined as follows:

$$
\underline{r}(t)=e^{\underline{s} t}
$$

where \underline{s} is a complex number

$$
\underline{s}=\sigma+j \omega
$$

Figure 2: Complex plane plots: $\underline{r}(t)=e^{j \omega t}$

Figure 3: Real and imaginary components of $\underline{r}(t)$ vs time

- What path does $\underline{r}(t)$ trace out in the complex plane ? Consider

$$
\underline{r}(t)=e^{\underline{s} t}=e^{(\sigma+j \omega) t}=e^{\sigma t} \cdot e^{j \omega t}
$$

One can look at this as a time varying magnitude ($e^{\sigma t}$) multiplying a point rotating on the unit circle at frequency ω via the function $e^{j \omega t}$. Plotting just the magnitude of $e^{j \omega t}$ vs time shows that there are three distinct regions (Fig. 4):

1. $\sigma>0$ where the magnitude grows without bounds. This condition is unstable.
2. $\sigma=0$ where the magnitude remains constant. This condition is
called marginally stable since the magnitude does not grow without bound but does not converge to zero.
3. $\sigma<0$ where the magnitude converges to zero. This condition is termed stable since the system response goes to zero as $t \rightarrow \infty$.

Figure 4: Magnitude $\underline{r}(t)$ for various σ.

Effect of Pole Position

The stability of a system is determined by the location of the system poles. If a pole is located in the $2 n d$ or $3 r d$ quadrant (which quadrant determines the direction of rotation in the polar plot), the pole is said to be stable. Figure 5 shows the pole position in the complex plane, the trajectory of $\underline{r}(t)$ in the complex plane, and the real component of the time response for a stable pole.
If the pole is located directly on the imaginary axis, the pole is said to be marginally stable. Figure 6 shows the pole position in the complex plane, the trajectory of $\underline{r}(t)$ in the complex plane, and the real component of the time response for a marginally stable pole.
Lastly, if a pole is located in either the 1 st or $4 t h$ quadrant, the pole is said to be unstable. Figure 7 shows the pole position in the complex plane, the trajectory of $\underline{r}(t)$ in the complex plane, and the real component of the time response for an unstable pole.

Figure 5: Pole position, $\underline{r}(t)$, and real time response for stable pole.

Figure 6: Pole position, $\underline{r}(t)$, and real time response for marginally stable pole.

$\operatorname{Re}[\underline{r}(\mathrm{t})]$

Figure 7: Pole position, $\underline{r}(t)$, and real time response for unstable pole.

