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Abstract 

The inverted pendulum is a common, interesting control problem that involves many 
basic elements of control theory.  This thesis investigates the standup routine and 
stabilization at the inverted position of a pendulum-cart system.  The standup routine uses 
strategic cart movements to add energy to the system.  Stabilization at the inverted 
position is accomplished through linear state feedback.  Methods are implemented using 
the Matlab Simulink environment, with a dSPACE DSP controller board for interaction 
with the physical system.  Algorithms described in this report were successful and 
consistently produced the desired results.  This report serves as a guide to the current 
working system and as background information on the inverted pendulum. 
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Title: Associate Professor of Mechanical Engineering 
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1. Introduction 

1.1 Purpose 

This report explores the standup and stabilization of an inverted pendulum.  It contains a 
theoretical analysis of the system dynamics and control methods, as well as a summary of 
the apparatus and implementation.  There are two purposes of this report: to summarize 
and explain the methods of controlling this specific pendulum-cart system; and to explore 
and illustrate in general the inverted pendulum problem. 

A major focus of this project was the use of Simulink software for control 
implementation. Simulink provides a block diagram representation of signal processing 
methods. Allowing for easy visualization, Simulink facilitates the design of complex 
control algorithms.  While code scripts have been used previously for this project, 
Simulink provides a more intuitive and organized solution. 

1.2 Project Overview 

This thesis covers several topics.  Primarily, there are two control problems: the standup 
routine and the stabilization in the inverted position. Also important, however, is the 
implementation of these control algorithms in the Simulink environment. 

The standup routine uses strategic cart movements to gradually add energy to the 
pendulum. This involves first placing the cart under position control.  Then a routine is 
developed to prescribe the cart’s movement.  This movement is such that the cart does 
work on the pendulum, in a consistent and efficient manner.  It is also important to 
gradually reduce cart movement amplitude so that the standup routine delivers the 
pendulum to the inverted pendulum position with small angular velocity. 

Inverted pendulum stabilization can be accomplished through several methods.  This 
analysis uses state feedback to provide the desired response.  Using LQR optimal design 
tools as a design hangle, the controlled system poles are placed to provide a fast, stable 
response. 

Simulink implementation requires the exploration of specific Simulink techniques. 
While state feedback control is well suited to the Simulink environment, the standup 
routine includes some logic that would be more easily represented in a program script. 
Adaptation to Simulink requires the generation of several information variables that 
describe the current system state.  These variables are the processed with logical 
operators in order to determine current actions.  The Simulink adaptation is slightly 
complex.  However, the Simulink implementation is superior to a script in many areas 
because routines have little or no preset order, depending primarily on the present system 
state. 
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1.3 Organization 

The sections of this report cover both the theoretical and experimental aspects of this 
project. Section 2 contains a theoretical discussion of the system dynamics.  This 
analysis is necessary for system modeling, controller design, and for general background 
understanding of the pendulum-cart system.  Section 3 describes the details of the 
apparatus, including modeling assumptions and specific parameter values.  Section 4 
explores the controller design, for both standup and stabilization.  Stabilization is covered 
in Section 4.1, and involves linear state feedback methods.  Standup is covered in Section 
4.2, which explores the strategic cart motion that delivers energy to the pendulum. 
Section 5 documents the specific Simulink implementation. This section seves as a 
user’s guide to the current functioning system, as well as a tutorial on Simulink methods. 
Finally, Section 6 gives Recommendations for further improvements.  Appendix A 
includes the Matlab files used and Appendix B contains simple instructions on how to 
operate the system. 

1.4 Acknowledgments 

I would like to voice my appreciation to everyone who helped me on this project.  Special 
thanks to Professor Trumper for suggesting this thesis and for his guidance along the 
way, to Mike Liebman for his assistance and support in the Mechatronics Lab, and to 
Steve Ludwick for sharing his understanding of the current project setup.  Finally, many 
thanks to those who made contributions on this project before me, particularly Steve 
Ludwick, Ming-chih Weng, and Pradeep Subrahmanyan, and Professor Will Durfee and 
his students who originally built the pendulum-cart experiment hardware at MIT. 
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2. Pendulum Cart Modeling and Dynamics 

For the purpose of this report, it is necessary to understand the dynamics of the pendulum 
cart system.  In the follow pages, a theoretical analysis is conducted, using the 
Lagrangian approach to derive the state equations.  The result is linearized around two 
points of operation, pendulum up and down, and transfer functions are derived and 
analyzed.  This approach provides an in depth theoretical explanation for the dynamics of 
this system.  Throughout this analysis, vector and matrix quantities are distinguished 
using bold text. 

2.1 Lagrangian Dynamic Analysis 

A complete theoretical model of the pendulum cart system can be done using Lagrangian 
Dynamics.  First we choose generalized coordinates, and then derive expressions for the 
generalized forces, energy functions, and Lagrangian.  Finally, we can use Lagrange’s 
Equation to derive the equations of motion [3]. 

A schematic of the system is shown in Figure 2.1.  This model and coordinate system will 
be used in the analysis.  For completeness, this derivation involves inertia about the 
pendulum center of mass, I, though in the case of a point mass this term becomes zero. 

q 

x 

f(t) 

l 

I,m 

M 

b 

c 
i ^

ĵ 

Figure 2.1:  Schematic of Pendulum Cart. Model includes cart mass M, pendulum of 
mass m and inertia I about its center of mass, which is a distance l from the pendulum 

pivot. Also included is rotational and translational viscous damping coefficients b and c. 

Generalized Coordinate System 

The cart pendulum system has two degrees of freedom and can therefore be fully 
represented using two generalized coordinates.  For this analysis, the generalized 
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coordinates are chosen as the horizontal displacement of the cart, x, and the rotational 
displacement of the pendulum, θ : 

ξ j : x,θ (2.1) 

The positive direction of x is to the right and the positive direction of θ is clockwise, 
measured from the downward position.  Positive θ was chosen in the clockwise direction 
so that x and θ are both measured to the right when the pendulum is in its inverted 
position. A complete and indepentent set of the associated admissible variations is given 
by 

ξ j : δ x,δθ (2.2) 

so the system is holonomic. 

Generalized Forces 

An expression for the generalized forces, Ξ j, can be derived from the nonconservative 
work, given by 

W 
N n 

nc ncδ = ∑ f • δ Ri = ∑Ξ δξ j (2.3)j 
i= 1 j= 1 

where Ri is the position vector where the ith nonconservative force acts.  The 
nonconservative forces in this case result from the input force and the system damping, 

W nc b&δ = t f x & δθθ − δ (2.4)) ( − δ x xc 

Comparing Equations 2.3 and 2.4 yields expressions for the generalized forces: 

) ( − xc &Ξ = t f x 
(2.5)

b&Ξθ θ − = 

Kinetic and Potential Energy Functions 

The kinetic coenergy function for the cart mass is simply 

*TM = 1 
xM &2 

(2.6)
2 
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For the pendulum, the coenergy function can be derived from 

1 2T * = 1 
m v • v + I ω (2.7)m 2 c c 2 

where I is the moment of inertial around the pendulum’s center of mass and vc is the 
velocity of the pendulum’s center of mass.  This velocity can be related to the position of 
the pendulum’s center of mass, 

r = (x − l ) sin ˆ − l cosθ ̂j (2.8)θ ic

by 

v = 
d rc = (x & − l cos θ θ &)î + l sin θ θ & ĵ (2.9)c dt 

The angular velocity of the pendulum is simply 

&ω θ = (2.10) 

Substituting Equations 2.9 and 2.10 into Equation 2.7 yields 

& & 2 2 & 2T * = 1 
m (x &2 − 2 lx cos + θ θ l cos θ θ + l 2 sin2 θ θ & 2 ) + 1 

I θ & 2 
(2.11)m 2 2 

which, upon simplifying, becomes 

& & 2 & 2T * = 1 
m (x &2 − 2 lx cos + θ θ l θ ) + 1 

I θ & 2 
(2.12)m 2 2 

The total kinetic coenergy is 

T * * & & 2 & 2= TM + T * = 1 
Mx&2 + 1 

m (x &2 − 2 lx cos + θ θ l θ ) + 1 
I θ & 2 

(2.13)m 2 2 2 

Since the cart moves only in the horizontal direction, the potential energy of the system is 
determined entirely by the angle of the pendulum, given by 

V = − mgl cosθ (2.14) 
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Lagrangian 

From the kinetic coenergy and potential energy functions, the Lagrangian is given by 

L = T * − V (2.15) 

Using Equations 2.13 and 2.14, the Lagrangian can be written as 

2( & 2 − 2 lx cos + θθ l θ ) + 1 
Iθ & 2 + mglcosθ (2.16)L = 1 

xM &2 + 1 
x m & & 2 & 

2 2 2 

Lagrange’s Equation 

State equations can be generated using Lagrange’s Equation: 

d ⎛ ∂ L ⎞⎟ ∂ L = Ξ j (2.17)
dt ⎜

⎜
∂ξ & j 

⎟ − 
∂ξ j⎝ ⎠ 

The equation for x is 

d ⎛ ∂ L ⎞ ∂ L
⎜ ⎟ − = Ξ x (2.18)

dt ⎝ ∂ x& ⎠ ∂ x 

Using Equation 2.16 and evaluating the partial derivatives yields 

d & ) ( − xc & (2.19)( xM & + xm & − mlcos θθ ) − 0 = t f 
dt 

which reduces to 

2(M + x m && & ) ( − xc & (2.20)) && − mlcos + θθ mlsin θθ = t f 

The equation for θ is 

d ⎛ ∂ L ⎞ ∂ L
⎜ & ⎟ − = Ξθ (2.21)

dt ⎝ θ∂ ⎠ θ ∂ 

Using Equation 2.16 and evaluating the partial derivatives yields 

d 2 & & & θ &(− xml & cos + θ ml + θ Iθ ) − ( xml & sin − θθ mgl ) sin = − bθ (2.22)
dt 
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which reduces to 

&& & & b&(ml2 + I) − θ xml && cos + θ xml & sin − θ θ xml & sin − θ θ mglsin = θ θ − (2.23) 

Simplifying and rearranging, the system state equations are 

&& & 2 ) ( ⎪ ) && + xc & − mlcos + θ θ mlsin θ θ = t f ⎧ (M + x m 
(2.24)⎨ 2 && &⎪− xml && cos + θ (ml + I) + θ b + θ mglsin = θ 0⎩ 

2.2 Linearization and Transfer Function Generation 

Before proceeding with further analysis, we must linearize the state equations.  There are 
two equilibrium points: θ =0 (pendulum down, stable) and θ =π (pendulum up, unstable). 
Focusing on small variations of θ about the equilibrium point θ o: 

θ = θ 0 ε + 
(2.25)

& ε = θ & 

From a Taylor Series expansion, a first order approximation of any function of θ is 

df
f ) ( ≈ f (θ ) ε + (2.26)θ 0 dθ θ 0 

Also, because higher order terms are neglected, 

ε & 2 ≈ 0 (2.27) 

2.2.1 Pendulum Down (θ =0) 

For θ =0, Equation 2.26 yields to first order 

)]0sin( [ = 1cos ≈ θ )0cos( − θ +

sin ≈ θ )0sin( θ + )]0[cos( θ = 

(2.28)


Substituting these linearizations into the system state equations (Equation 2.24) and 
neglecting the higher order term yields 

⎪ ) && + xc & − ml = θ t f ⎧ (M + x m && ) ( 
(2.29)⎨ 2 && &⎪− xml && + (ml + I) + θ b + θ mgl = θ 0⎩ 
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Taking the Laplace Transform 

2⎧(M + s m s X ) ( − mls Θ ) ( = s F ⎪ ) 2 ) ( + s csX s ) ( 
(2.30)

⎪− s X mls ) 2 s s s 
⎨ 2 ) ( + (ml2 + s I Θ ) ( + bsΘ ) ( + mglΘ ) ( = 0⎩ 

Using substitution to eliminate either X(s) or Θ(s) yields two transfer functions: 

) ( = s a 2 + s a + a0s X 2 1sG ) ( =1 ) ( s b 4 + s b 3 + s b 2 + s b s F 4 3 2 1 

Θ ) ( = s c 
(2.31) 

G ) ( = s 2s2 ) ( s b 3 + s b 2 + s b + b1s F 4 3 2 

where 

2a2 = ml2 + I ≈ ml


a1 = b


a2 = mgl

2 2 2b4 = (M + m)(ml2 + I) − l m ≈ Mml


) 2
b3 = (M + b m + (ml2 + c I ≈ (M + b m + c ml ) )


)
= (M + mgl m + bcb2


= mglc
b1


c2 = ml


The approximations shown in the coefficients above are for I=0, which is the ideal case 
where the pendulum is constructed from a point mass and massless rod, so that it has no 
moment of inertia about its center of mass.  Using this approximation, the transfer 
functions reduce to: 

s X 2) ( = s ml 2 + bs + mgl
sG ) ( = 1 s F 2 ) 2 ] ) ]) ( s Mml 4 + [(M + b m + s c ml 3 + [(M + mgl m + s bc 2 + mglcs 

sΘ ) ( = mls 
(2.32) 

sG2 ) ( =

s F 2 ) 2 ] ) ]
) ( s Mml 3 +[(M + b m + s c ml 2 + [(M + mgl m + s bc + mglc 

The pole-zero plots and bode diagrams for these transfer functions are shown in 
Figure 2.2. 
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Figure 2.2:  Pole-zero plots and Bode diagrams with the system linearized around θ =0 
(Pendulum down) 

2.2.2 Pendulum Up (θ =π ) 

For θ =π , Equation 2.26 yields to first order 

− πcos ≈ θ cos + π ( θ − π ) sin )( − = 1 

+ π ( θ − π ) cos( ) θ − π = 
(2.33)

sin ≈ θ ) sin( π 

Analysis is simplified by defining a new coordinate [1] 

θ′ π − θ = (2.34) 

This is nothing more than θ measured clockwise from the up pendulum position.  Now 

′sin − π ≈ θ ( π + θ ) − = θ′ (2.35) 
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From here on in the analysis, θ′ will be written as θ , but it should be noted that θ now 
measures from a new reference.  Note also that 

& & && && θ′ θ = and θ′ θ = (2.36) 

so this substitution does not have any other effects on the state equations. 

Substituting these linearizations into the system state equations and neglecting the higher 
order term: 

⎪ ) && + xc & + ml = θ t f ⎧ (M + x m && ) ( 
(2.37)⎨ 2 && &⎪ xml && + (ml + I) + θ b − θ mgl = θ 0⎩ 

Taking the Laplace Transform 

2⎧ (M + s m s X ) ( + mls Θ ) ( = s F ⎪ ) 2 ) ( + s csX s ) ( 
(2.38)

⎪ s X mls ) 2 s s s 
⎨ 2 ) ( + (ml2 + s I Θ ) ( + bsΘ ) ( − mglΘ ) ( = 0⎩ 

Using substitution to eliminate either X(s) or Θ (s) yields two transfer functions: 

) ( = s a 2 + s a + a0s X 2 1sG ) ( =1 ) ( s b 4 + s b 3 + s b 2 + s b s F 4 3 2 1 

Θ ) ( = s c 
(2.39) 

G ) ( = s 2s2 ) ( s b 3 + s b 2 + s b + b1s F 4 3 2 

where 

2a2 = ml2 + I ≈ ml


a1 = b


a2 − = mgl

2 2 2b4 = (M + m)(ml2 + I) − l m ≈ Mml


) 2
b3 = (M + b m + (ml2 + c I ≈ (M + b m + c ml ) )


)
− = (M + mgl m + bcb2


− = mglc
b1


c2 − = ml


The approximations shown above are for I=0, which is the ideal case where the pendulum 
is constructed from a point mass and massless rod, so that it has no moment of inertia 
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about its center of mass. Using this approximation, the transfer functions reduce to: 

s X 2) ( = s ml 2 + bs − mgl
sG ) ( = 1 s F 2 ) 2 ] ( [ M + mgl m + s bc 2 − mglcs) ( ( s Mml 4 + [(M + b m + s c ml 3 − + ) ] 

sΘ ) ( = − mls 
(2.40) 

sG2 ) ( = 
s F 2 ) 2 ] ( [ M + mgl m + s bc − mglc) ( s Mml 3 + [(M + b m + s c ml 2 − + ) ] 

The pole-zero plots and bode diagrams for these transfer functions are shown in 
Figure 2.3. 
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Figure 2.3:  Pole-zero plots and Bode diagrams with the system linearized around θ =π 
(Pendulum up). 
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2.3 State Space Representation 

For linear state control of the inverted pendulum, it is necessary to convert the state 
equations to state space representation in the form 

x& =
Ax+
Bu (2.41) 

For the state vector x a change in variable notation is needed, defined by 

x =


⎜

⎛⎜
⎜
⎜
⎜ 
⎝ ⎟ ⎜

⎛⎜
⎜
⎜
⎜ 
⎝ 

⎞⎟
⎟
⎟
⎟ 
⎠ & ⎟

⎞⎟
⎟
⎟
⎟ 
⎠θ 

x1 x 

x&x2 =
 (2.42)
θ
x3 

x4 

Referring back to the linearized state equations for Pendulum Up (Equation 2.37), and 
neglecting I, this change of variables leads to 

( 

xml &2 

⎧
⎨
⎩ 

)x m 2 ) ( t f M xml &4 =
&
+
 +
cx2 +

(2.43)2 −
mglx3 =
0x ml &4 bx4+
 +


From the variable definitions: 

x&1 

x&3 

=
=


x2 
(2.44) 

x4 

Expressions for x&2 and x&4 can be found by using substitution to eliminate 

either x&4 or x&2 from Equation 2.43. The result, in matrix form, is given by 

d 

dt 

⎛⎜
⎜
⎜
⎜ 
⎝⎜

x1 

x2 

x3 

x4 

⎞⎟
⎟
⎟
⎟ 
⎠⎟

=


⎛⎜
⎜
⎜
⎜ 
⎝⎦⎜

x1 

x2 

x3 

x4 

⎞⎟
⎟
⎟
⎟ 
⎠⎟

+ 

⎡
⎢
⎢
⎢
⎢
⎣ 

0 

0 

0 

0 c 

⎤
 ⎡
 ⎤
1 0 0 0 
⎥
⎥
⎥
⎥


⎢
⎢
⎢
⎢

⎣


⎥
⎥
⎥
⎥
⎦1/ Ml 

−
 /
M
 −
 / /M mg Ml b 1/
Mc 
t f ) ( (2.45)0 0 1 0 

2M +
 ) / Ml g m −
(
M
+
 −
/ ( ) / Mml b m Ml 
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3. Apparatus 

A real pendulum-cart system was used for this thesis project.  This system includes the 
necessary equipment to constrain motion, apply force, measure states, and implement 
control schemes. 

A block diagram of the system is shown in Figure 3.1, with a full schematic in Figure 3.2. 
The components involved are a current amplifier, DC motor with gearing, a cart with 
pendulum, an array of feedback instruments, and a computer with Simulink software for 
signal processing.

Motor   Input              Output Controller 
Current 

Amplifier 
Pendulum 

Cart 

Calibration Sensors 

Simulink 

Figure 3.1:  Pendulum Cart System Block Diagram. 

Current is amplified using an Aerotech 4020 DC Servo Controller in current mode.  This 
amplifier has a gain of 2 A/V, with a bandwidth of 2 kHz.  Maximum ratings at 25° C are 
40 V, 5 A continuous, and 20 A peak (2 seconds).  The amplifier input power required is 
100-125 V at 50-60 Hz, which is taken directly from an electrical outlet.  For general 
operation, amplifier dynamics are negligible and the amplifier is modeled as a single gain 
Ka=2 A/V. 

The driving motor is an Aerotech Permanent Magnet DC Servo Motor, Model 1135 
Standard. The motor has a torque constant Kt=0.17 N-m/A, inertia J=3.6×10-4 kg-m2, and 
viscous damping b=0.007 N-m/krpm.  Because this motor is driven by a current 
amplifier, the back emf, Kb=18.2 V/krpm, need not be considered.  Electrical dynamics 
can also because of the current drive. In any case, the electrical time constant is 
τe=2.2 ms, which is small compared to the mechanical time constant of τm=16 ms. 
Armature resistance, 1.4 Ω, is not important because a current drive is used.  The motor 
torque is connected directly to the cart using a chain drive with a radius of 4 cm. 
Including this gearing, the total motor gain can be expressed as Km=4.25 N/A. Motor 
inertia and damping is lumped with parameters of the pendulum cart.  This motor is also 
equipped with a tachometer with constant Ktach=3 V/krpm, used for cart velocity 
feedback. 
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Figure 3.2:  Schematic of Pendulum-Cart System. 

A photograph of the pendulum-cart system is shown in Figure 3.3. Rod mass and inertia 
about the pendulum center of mass are small and can be neglected.  The pendulum is thus 
approximated as a point mass m=0.15 kg on a massless rod of length l=0.314 m. The 
pendulum is attached to the cart with a pivot joint that allows full rotational motion with 
very low viscous friction.  The cart is mounted on a horizontal track, which constrains 
cart motion to one dimension. The track imposes some sliding friction (modeled 
approximately as viscous damping) and has end stops that limit travel to 0.323 m.  Force 
can be applied to the cart through the chain drive. 

For low frequency operation, including the frequencies of interest herein, the cart mass 
and motor inertia are not independent because the chain and gearing that connects them 
are relatively rigid.  Motor inertia can thus be expressed as an equivalent mass.  Using the 
relations between torque T, force F, angular 
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Figure 3.3:  Photographs of the Pendulum Cart with pendulum down (left) and up (right). 

velocity ω , and velocity v for a wheel of radius R: 

v& 
T = FR = J = ω & J (3.1)

R 
J

F = v& (3.2)
R2 

J
M =  (3.3)eq R2 

For the actual values, this equivalent mass is Meq=0.225 kg, which is added to the mass of 
the cart (1.3 kg) for a total effective mass M=1.525 kg.  Higher frequency operation 
would require more detailed theoretical analysis, but this is well above system crossover 
and therefore does not warrant consideration. 

Cart position and velocity and pendulum angular position are measured directly for 
feedback. Pendulum angular position (θ ) and cart position (x) are measured using two 
mechanical encoders mounted at the pendulum joint and motor shaft.  Both encoders 
have 4000 counts per revolution.  Considering the setup and gearing, this gives a 
resolution of 63 µ m in cart position x and 1.57× 10-3 rad or 0.09° in pendulum angle θ . 

Cart velocity is measured using the tachometer on the motor shaft.  This signal is 
processed using a voltage follower and a unity gain low pass filter with a bandwidth 
2 kHz. 

Simulink software, with a dSPACE controller board, is used for signal processing and 
controller implementation. Signals to and from the hardware are connected using a 
DS1102 interface card and processed digitally.  Simulink is used to manage and calibrate 
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the array of feedback signals, and to implement both the standup routine and linear 
controller. The sampling rate as implemented was 2000 Hz, which is high enough to 
produce negligible phase loss at crossover. 
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4. Controller Design 

Control algorithms for this project had two functions: 1) to gradually swing the pendulum 
to the inverted position and then 2) to balance the pendulum at this unstable equilibrium 
point. The first requires a routine of precision cart movement that gradually adds energy 
to the system.  The second is solved using state feedback.  This section focuses on both 
the theoretical design and experimental results, as these topics are frequently inseparable 
in controller design.  The specific Simulink implementation is covered later in section 5. 

4.1 Linear Control (Pendulum Inverted) 

In the inverted position, the pendulum is unstable without control.  The transfer function 
between cart position x and control input contains both a pole and a zero in the right half 
plane. Because of the proximity of this pole zero pair, it is difficult to obtain a stable 
response through classical feedback methods. 

Instead, stabilization of the pendulum is conducted through full state feedback.  Using 
this method, the system poles can be placed arbitrarily. 

For a Linear Time Invariant System 

x& = Ax + Bu (4.1) 

the system poles are given by the eigenvalues of A, defined as the solutions λ to 

− λ AI = 0 (4.2) 

where I is the identity matrix of proper dimension and the symbol ‘| |’ refers to the 
matrix determinant.  An array of negative feedback gains is used, so that the input u is 
proportional to the given states: 

u − = x (k + k 2x + L+ k x ) − = Kx (4.3)1 1 2 n n 

where 

K = [k L k ] (4.4)1 k 2 n 

For systems with single inputs, u and k1 through kn reduce to scalar quantities, and K is a 
row vector. Substituting Equation 4.3 into Equation 4.1, 

)x& = Ax − BKx = (A − x BK (4.5) 
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Analysis is simplified by defining the controlled state matrix 

A = A − BK (4.6)c 

yielding 

x& = x A (4.7)c 

Now the system poles are given by the eigenvalues of Ac, defined by 

− λ ACI = 0 (4.8) 

It can be shown for most systems that by choosing the proper gain matrix, the

eigenvalues of Ac, which are the controlled system poles, can in theory be placed

anywhere.  Using this method, a fast, stable response can be accomplished.


Actually performance is limited by the physical hardware, which includes terms such as 
friction, finite track length, and amplifier saturation.  Best results are achieved by 
optimizing between response speed and control effort.  This was accomplished 
numerically using a linear-quadratic regulator (LQR) method.  The Matlab function ‘lqr’ 
performs this operation, and allows for weighting of both the state errors and the control 
effort. Figure 4.1 shows the original and controlled pole placement.  Figure 4.2 shows a 
simulated response to an initial error in theta under this control scheme. 
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Figure 4.1:  Resulting LQR Pole Placement. Figure 4.2:  Simulated system response for 
an initial error in θ . From top to bottom, 

output shown is x, x& , θ , θ & , and control effort. 
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4.2 Standup Routine 

The pendulum begins at rest, hanging downward in a stable equilibrium.  The standup 
routine raises the pendulum to the inverted position, where the linear controller can 
stabilize it. It is important that the standup routine delivers the pendulum to the inverted 
position in a controlled, predictable fashion and at small angular velocity. 

The basic strategy is to move the cart in such a motion that energy is gradually added to 
the pendulum. This first requires putting the cart under position control.  Then a routine 
is needed to drive the cart’s position. 

It is critical that this cart motion is synchronized with the pendulum swing.  Precalculated 
movements and pauses will not suffice, being prone to system disturbances and 
uncertainty.  Instead, a control method is needed which reacts to the current system state, 
and prescribes cart position accordingly. 

4.2.1 Cart Position Control 

The control of the cart position is straight forward, and will only be covered briefly. 
There exist many position control schemes alternate to what is presented here.  However, 
it is required only that this controller act fast compared to pendulum movement and reject 
the disturbance forces caused by the pendulum swing.  Significant overshoot is 
undesirable because it causes unpredictability. 

For the design of this controller, pendulum motion is ignored.  This results in a simple 
cart model two pole system with mass and damping.  A bode plot is shown in Figure 4.3. 
It can be seen that even at low frequencies, both poles contribute a significant phase shift. 

Higher crossovers can be achieved using a lead compensator with proportional gain. 
Bode plots of the suggested controller and the resulting transfer function are shown in 
Figure 4.4.  The controller shown provides an additional 42° phase margin for a closed 
loop system crossover at 40 rad/s with 55° total phase margin. 

Experimental results differed significantly from the theoretical modeling.  An 
experimental bode plot (Figure 4.5) shows reduced amplitude and further phase 
degradation. Significant care was taken to ensure that this discrepancy is not a 
calculation error.  Direct measurements of closed loop force vs. displacement show that 
all gains are accounted for correctly.  Instead, the difference must lie in modeling 
assumptions and parameter values.  In practice, it was necessary to significantly increase 
the proportional gain in order to produce the desired crossover. 
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Bode Diagrams of Cart 

i

0 

P
ha

se
 (

de
g)

; 
M

ag
n

tu
de

 (
dB

) 
-60 

-40 

-20 

-160 

-140 

-120 

-100 

-1 0 1 2
10 10 10 10

Frequency (rad/sec) 

Figure 4.3:  Bode Diagrams of Cart System. 

Controller Loop Transmission 
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Experimental Bode Diagrams 
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Figure 4.5:  Experimental Bode Plot of the Cart System. 

4.2.2 Motion Strategy: A Work Analysis 

With the ability to prescribe cart motion, we should now explore how to best add energy 
to the pendulum. We desire a cart trajectory that raises the pendulum efficiently, 
consistently, and predictably. 

q 

x 

Fr 

m 

Fg 

î
ĵ l 

Figure 4.6:  Coordinate System and Free Body Diagram of Pendulum Cart System. 

26 



Using a Newtonian approach, expressions can be derived relating pendulum and cart 
motion. With the cart under position control, it is natural to think of cart position, 
velocity, and acceleration all as input parameters which we can prescribe.  Figure 4.6 
shows again a diagram of the pendulum, with the same coordinates used earlier, and a 
free body diagram.  Using Cartesian coordinates, the motion and forces on the pendulum 
can be described.  Throughout this analysis, bold characters are used to denote vector 
quantities, while non-bold characters represent scalar quantities.  Velocity and 
acceleration of the pendulum can be found by differentiating position: 

r = (x − l sin θ )î − l cos θ ̂j (4.9) 

v = dr = (x& − l cos θθ & )î + l sin θθ & ĵ (4.10)
dt 

&& + l sin θθ & − l cos θθ )î + cos ( θθ & + l sin θθ j (4.11)a = dv = (x 2 && l 2 && ˆ 
dt 

Two forces act on the pendulum mass: the force of the rod, 

F = F (sin θ ̂i + cos θ ̂j) (4.12)r r

and the force of gravity, 

F = − mgĵ (4.13)g 

Using Newton’s Law, 

∑ F = ma (4.14) 

2F sin θ ̂i + (F cos − θ mg) ĵ = x m && cos ( θθ & + l sin θθ ) ĵ (4.15)( && + l sin θθ & − l cos θθ )î + l m 2 && 
r r 

This can be rewritten as two equations, one for each direction: 

& 2 && F sin θ = x m ( && + l sin θθ − l cos θθ )r  (4.16)
& 2 && cos ( θθ + l sin θθ )F cos − θ mg = l m r 

This can produce several results.  Using substitution to eliminating Fr and rearranging, an 
expression is found that relates the relative movements of the cart and pendulum: 

&& lθ 
x&& − − g tan θ = 0 (4.17) 

cos θ 

Examining Equation 4.17, several points can be made.  Without cart acceleration, this 
system is a simple pendulum, with gravity causing pendulum rotational acceleration at a 
magnitude increasing with swing angle.  Cart acceleration also causes pendulum rotation, 
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in addition to the effects of gravity. It can be seen that the direction of pendulum 
rotational acceleration depends on the direction of cart acceleration and whether the 
pendulum angle is above or below 90° . The effect of a cart acceleration on pendulum 
rotation is greatest when θ =0° (pendulum down) and at θ =180° (pendulum up). 

Alternatively, Equation 4.16 can be solved for Fr, by eliminating && θ : 

2&F = m(sin θ x&& + lθ + g cos θ )	 (4.18)r 

It is desirable to know how much work is done on the system when the cart is moved a 
small distance. This is simply the component of the force that is in the direction of 
movement, times the small displacement, 

2 )δ W = F • ∂ x = F sin ∂θ x = m(sin θ x2 && + l sin θθ & + g sin θ cos δ θ x (4.19)r r 

Equation 4.19 shows three terms contributing to the force in the rod, and therefore 
contributing to the work done: an inertial force, a centripetal force, and a gravitational 
force. These components have their maximum work contributions at ± 90° , ± 90° , and 
± 45° , respectively. 

The first term in Equation 4.19 is of great importance, as it describes the work effect of a 
given acceleration at any angle.  Figure 4.6 shows a plot of this term. For θ near ± 90° , a 
given acceleration and displacement will do a lot of work; for θ near 0° , hardly any work 
is done. If the acceleration and displacement are in the same direction, the work done is 
positive and energy is added to the system.  If the acceleration and displacement are in 
opposite directions (deceleration), the work done is negative and energy is taken out of 
the pendulum. 

Normalized Work vs. Pendulum Angle 
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Figure 4.7:  Ratio of Work to Acceleration as a Function of Pendulum Angle. 
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The strategy is to prescribe a cart trajectory that is driven by θ . Because the cart track is 
of finite length, the trajectory must contain both acceleration and deceleration.  To 
maximize the positive work done on the pendulum, the trajectory should be such that the 
cart accelerates when there is high work transfer (θ near ± 90° ) and decelerates when 
there is low work transfer (θ near 0° ). Figure 4.8 depicts a strategy that provides 
acceleration and deceleration in the proper regions. 

I 

II 

III 

I 

II 

III 

Figure 4.8:  Cart Motion Strategy:  Accelerate the cart when the pendulum is in region I, 
decelerate when the pendulum reaches region II, and then wait while the pendulum goes 

through region III until it changes direction.  Deceleration in region III is undesirable 
because it will do negative work, taking energy out of the pendulum. 

Because track length is limited, a cart position is specified instead of acceleration.  The 
position trajectory must be chosen to have appropriate acceleration characteristics, 
accelerating and decelerating at the correct sections of the pendulum swing.  One suitable 
trajectory is to use half a period of a cosine wave, adjusted to fit a section of the 
pendulum, 

⎛ θ ⎞ 
xd = Acos	⎜⎜ π⎟⎟ for 0 θ < θ < max and < θ & 0 (4.20) 

⎝ θ max ⎠ 

where A is the amplitude and θ max is the angle at which motion starts and should be an 
angle with high positive work transfer.  If the pendulum is not yet swinging past 90° , θ max 

should be the highest point in the swing.  Once the pendulum swings out of this region, to 
θ <0, the cart should remain motionless and wait for the pendulum to begin swinging 
downward again.  Then a similar movement in the opposite direction should be 
prescribed. Figure 4.9 shows a plot of this desired position function. 
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Cart Position vs. Pendulum Angle 
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Figure 4.9:  Cart Position versus Angle for the Pendulum Swinging to the Right. 

It should be noted that because the trajectory given by Equation 4.20 is a function of θ , 
cart velocity and acceleration depend on the derivatives of θ .  Specifically, 

∂ xd &x& d = θ = − Aπ 
sin

⎛
⎜⎜ θ π

⎞
⎟⎟θ & (4.21)

θ∂ θ max ⎝ θ max ⎠ 

and 

2 
& ∂ x && Aπ Aπ 

sin⎜⎜
⎛ θ ⎞ && && d =

∂ x& d + θ 
& 

θ = − cos 
⎛
⎜⎜ θ π

⎞
⎟⎟θ & 2 − π⎟⎟θ (4.22)x 

2θ∂ θ∂ θ max ⎝ θ max ⎠ θ max ⎝ θ max ⎠ 

So the cart acceleration is not actually a cosine function, but involves the pendulum 
motion. When pendulum motion is considered, it can be shown that the cart acceleration 
and deceleration are in fact in the desired swing regions discussed earlier, although their 
magnitudes are quite dependent on swing dynamics. 

For this analysis, the remaining terms in Equation 4.19 have been greatly ignored. This is 
mainly because unlike acceleration, θ & and gravity are beyond our control.  Also, it is 
hoped that a fast controller will produce much greater effects through the first term.  If 
anything, these later two terms suggest times when energy is added simply by moving the 
cart.  This brings advantages to a trajectory that moves large distances while the 
pendulum is at θ of ± 90° and ± 45. 

30 



In choosing this trajectory, it was critical that cart motion would allow the pendulum to 
move through the proper swing areas.  Because both acceleration and deceleration is 
necessary for the finite length track, the pendulum must move from regions of high to 
low work transfer.  For the trajectory described by equation 4.20, it is necessary that the 
pendulum indeed swings from ±θmax to 0°. Certain rapid cart movements will in fact 
cause the pendulum to accelerate upwards (see Equation 4.17), especially when the 
pendulum begins at a low height.  In all considered trajectories, pendulum dynamics must 
be analyzed. 

The pendulum motion can be analyzed using a Matlab numerical solver.  Figure 4.10 
shows the pendulum swing and cart movement with the pendulum beginning motionless 
at initial angles of 40°, 100°, and 160°. For small swings, the pendulum begins moving 
slowly, both because gravity has a smaller accelerating effect and because cart movement 
tends to push the pendulum in the opposite direction. Great acceleration at low starting 
angles would cause the pendulum to swing upwards.  Matlab scripts are included in 
Appendix A. 

While the trajectory described so far can efficiently add energy to the system, the standup 
routine requires additional algorithms at the start and finish.  This trajectory is ineffective 
when the pendulum is at rest, because there is no work transfer when θ=0° and because 
of the pendulum dynamics discussed earlier.  In this region, a quick change in cart 
position can be used to start the pendulum swinging.  Several, well-timed jumps improve 
performance. 

Pendulum Response Under Prescribed Cart Movement
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Figure 4.10:  Pendulum and Cart Motion at Start Angles of 40°, 100°, and 160°. The 
cart moves only in a specific region of the swing in a trajectory that does work on the 

pendulum. For smaller start angles, the pendulum motion begins very slowly. 
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As the pendulum approaches the inverted position, caution must be used that the 
pendulum reaches vertical at a low velocity.  The trajectory described in equation 4.20 is 
still effective, but the amplitude must be reduced. 

In summary, the standup routine should consist of the following subroutines, in this 
order: 

1.	 Begin with a series of quick cart movements that begin the pendulum 
swinging. 

2.	 Move the cart in a fashion that efficiently adds energy to the pendulum. 
3.	 As the pendulum swings higher, gradually reduce cart movement amplitude so 

that the pendulum approaches the inverted position in small increments and 
ultimately reaches vertical with small angular velocity. 

Trajectory amplitude for subroutine 3 can be calculated as some function of the 
maximum height of the previous swing.  This amplitude function can be tuned to produce 
the desired result of a gradual approach to vertical.  More elaborate calculations could 
calculate the current energy of the pendulum, and prescribe a trajectory that delivered a 
certain amount of work.  However, this calculation is computationally intensive, as it 
involves a work integral with continually changing parameters. 

This algorithm is incapable of recovering if the pendulum is thrown over vertical with 
large velocity.  It is therefore necessary to approach vertical carefully and gradually. 
Developing an algorithm that can recover opens the door to new strategies that are less 
cautious or perhaps intentionally throw the pendulum over the vertical, but this is beyond 
the scope of the present work. 
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5. Simulink Implementation 

The routines and controllers described earlier, along with all general signal handling, are 
implemented using a single Simulink model.  A Matlab script is used so that many 
system parameters are set from a single source.  This section focuses on the details of the 
Simulink model, and assumes that the reader is somewhat familiar with general Simulink 
usage. First, we look at some useful Simulink methods.  Then we give a complete 
explanation of the actual Simulink model.  As the model contains numerous levels 
constructed with Simulink Subsystem blocks, analysis proceeds from the top down, 
beginning with the overall model before examining the Subsystems.  In this fashion, the 
reader should learn the basic workings of the entire system before complicating matters 
with the internal details. 

5.1 General Simulink Techniques 

A few block combinations appear so frequently in the model that it is worth explaining 
them separately, before looking at the actual model.  This will ease the explanation of 
later systems. 

Methods of Switching Outputs 

It is often desired to use different signals under different conditions.  This is comparable 
to “if then else” statements and other logical operations in program scripts.  Two methods 
of choosing outputs were found useful: enabled Subsystems and Multiport Switches. 

A model with enabled Subsystems is shown in Figure 5.1.  The Subsystems contain the 
Enable block, and run only when an enabling signal greater than zero is passed to them. 
Because an disabled system outputs zero, it is possible to sum the Subsystem outputs as 
long as only one is enabled at a time. 

enable 1

1 1
enable 2


output


Sum 

Out2 

Out1 

Subsystem 1 

Enable Constant Out1 
Command

Subsystem
 Subsystem 1 

2 1 
Enable Constant Out2 

Subsystem 2 

Subsystem 2 

Figure 5.1:  Simulink model Using Enabled Subsystems to Choose an Output.  The 
Command Subsystem is used to generate two enabling signals, and should only enable 

one Subsystem at a time.  Depending which system is enabled, the output is either 1 or 2. 
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An alternative is the Multiport Switch, shown in Figure 5.2.  This block chooses an 
output according to the command signal.  The command signal is rounded to the nearest 
positive integer, and the corresponding input is passed through. 

2 

1 

1 

output 

Constant1 

Constant 

Command 

Multiport 
Switch 

Figure 5.2:  Multiport Switch Used to Choose an Output. 

Both methods can be expanded to handle choices between more than two inputs.  The 
enabled Subsystem method requires an enable signal for each input, and a Sum block that 
sums the signals from all of the Subsystems.  The Multiport Switch can take more inputs, 
and requires only a single command signal. 

Both methods were employed, as they each have benefits in certain situations.  For 
switching of computationally intensive inputs, the enabled Subsystem method is superior, 
because only one Subsystem is run at a time.  For switching simple signals, where 
Subsystems are unnecessary and computational efficiency is less critical, the Multiport 
Switch is convenient. 

Signal Holding 

Simulink provides an array of logical and relational operators that can be used to process 
information about the current system state.  However, it is often important to know if an 
event has happened.  For this it is desirable to generate a variable (usually Boolean) that 
is held at its maximum or minimum value over time. 

Such a holding function can be created using a combination of a MinMax and a Unit 
Delay block, as shown in Figure 5.3.  The MinMax block, usually used to compare two 
signals, is here used to compare a signal with is previous value.  The Unit Delay block is 
necessary to prevent algebraic loops, and its delay period should be set to match the 
simulation or controller sample period. Such a block combination outputs the maximum 
or minimum value of the input. It should be noted that the initial output value depends on 
the initial output of the Unit Delay block (which can be specified) and of the input signal. 
As many signals in Simulink are initialized to zero, it is likely that the initial output will 
be zero.  The Simulink Memory block can alternately be substituted for the Unit Delay 
block. 
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Figure 5.3:  Simulink constructions that hold the maximum (left) and minimum (right) of 
the input values. Special attention must be given to the initialization values of the Input 

and Unit Delay block. 

A slight variation of this system allows for the output to be reset to zero (Figure 5.4). The 
system then holds the maximum (minimum) value of the input since the last reset, where 
input below (above) zero produces a zero output. 

1 

z 

1 
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2 

1 

Output 
Product 

max 

MinMax 

NOT 

Logica
Operator 

Reset 
Signal 

Input 

Unit Delay 

Figure 5.4:  Hold Maximum with Reset.  A reset signal forces the output to zero.  The 
output is the maximum input value since the last reset. The output cannot go below zero. 

Holds and hold-resets are used throughout the final Simulink model.  Particularly, they 
are useful in generating command signals for switching, counting, and recording the 
height of the latest pendulum swing. 
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5.2 Overview of the Simulink Model 

In this section, the entire Simulink model is outlined and explained.  The model contains 
five levels of Subsystems.  Analysis proceeds from the top level down.  At each level, the 
function of all blocks and connections are described in moderate detail.  Then the 
individual Subsystems are examined in the same manner. 

Signals, blocks, and subsystems have been named to describe their function in the 
system.  While this simplifies the model, it abstracts the original Simulink blocks. 
Specific Simulink blocks are best recognized in this report by their shape and appearance. 
Using the actual Simulink model file, blocks can be identified by their dialog boxes. 

The system layout is shown in tree form in Figure 5.5, with branches indicating lower 
Subsystems.  A quick reference guide to the Subsystem hierarchy and their functions is 
shown in Table 5.1. 

Hold Max 

Hold Min 

Measurements 

Filter Bank 

Input 

Linear Controller 

Info 

Top Level 

Control Effort 

Controller Select 

Standup Routine 

Error Processor 

Position Generation Routine 1 

Amplitude Lookup 

Routine 3 

Routine 2 

Figure 5.5:  Tree Diagram of Subsystem Hierarchy. 
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Subsystem Subsystems Contained Function Section Page 
Top Level Measurements, Filter Bank, 

Input, Linear Controller, 
Standup Routine, 
Controller Select, Error 
Processor, Control Effort 

Process top level signals from feedback to control effort. 5.2.1 38 

Measurements None Read and calibrate feedback measurements from A/D. 5.2.2 40 
Filter Bank None Filter measurements for noise. 5.2.3 41 
Input None Set desired state for linear control. 5.2.4 42 
Linear Controller None Implement matrix gain state feedback. 5.2.5 43 
Standup Routine Position Generation Implement cart movement for standup routine. 5.2.6 43

 Position Generation Info, Amplitude lookup, 
Routine 1, Routine 2, 
Routine 3 

Create the desired position waveform for the standup 
routine. 

5.2.6 44 

Info Hold Max, Hold Min Create information and switching command variables. 5.2.6 46
 Hold Max None Remember the highest point of the last swing to the left. 5.2.6 46
 Hold Min None Remember the highest point of the last swing to the right. 5.2.6 46

       Amplitude Lookup None Determine movement amplitude for standup routine. 5.2.6 48
 Routine 1 None Start pendulum swinging. 5.2.6 49
 Routine 2 None Efficiently add energy to pendulum (|θ|<100°). 5.2.6 50
 Routine 3 None Continue adding energy to pendulum (|θ|>100°). 5.2.6 52 

Controller Select None Choose between the standup routine and linear control. 5.2.7 53 
Error Processor None Disable output according to certain error conditions. 5.2.8 54 
Control Effort None Calibrate and output to DAC 5.2.9 55 

Table 5.1:  Subsystem Hierarchy and Function 
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5.2.1 Top Level 

The top level system is shown in Figure 5.6.  Signals flow from left to right, with 
feedback signals entering in the Measurements block, traveling through various routines 
and controllers, and exiting to the hardware through the Control Effort block. 

Feedback signals are interpreted in the Measurements Subsystem.  This Subsystem 
includes the dSpace A/D conversion blocks and all necessary measurement calibrations. 
The resulting output from this block represents the physical quantities in SI units.  Cart 
displacement x is represented in meters, cart velocity xdot is represented in meters per 
second, and pendulum angle theta is represented in radians.  The directions of these 
measurements are consistent with that described in the theoretical derivation and 
apparatus summary earlier in this report. 

These measurements are processed in the Filter Bank Subsystem.  An array of low-pass 
filters is used for noise reduction.  The angular velocity of the pendulum, thetadot, and a 
repeating angular position variable, theta_mod, are created in this block.  All signals are 
labeled with the ‘_f’ extension to indicate that they have been filtered. 

From here, the signals split.  For linear control, the Input and Linear Controller 
Subsystems are used.  For the standup routine, the Standup Routine Subsystem is used. 
Both generate an output signal representing the force, in Newtons, that should be applied 
to the cart. Signal switching is conducted using the method of enabled Subsystems, 
described in Section 5.1. The enable signal is generated by the Controller Select 
Subsystem, and the outputs are combined at the Sum block. 

The Notch Filter is a Butterworth band stop filter for frequencies between 90 Hz and 120 
Hz. This is necessary to eliminate a resonant mode involving deflection in the pendulum 
rod. 

The Limiter block is used to protect the hardware.  In this block, the requested force 
output is limited to 20 Newtons, limiting amplifier current to 4.6 amps. 

The Error Processor Subsystem and Error Cutoff block form a safety system.  The Error 
Cutoff block is simply a Multiport Switch, with zero as the second input.  Under normal 
conditions, the Error Processor’s Subsystem outputs a value of 1, thereby selecting the 
Limiter block output, which is the force command signal.  Under certain error conditions, 
the Error Processor will send a command cutoff signal of 2, which will select the zero 
input and thereby disable the output and stop the cart. 

The Control Effort Subsystem calibrates the Force signal, and writes to the DAC.  The 
analog signal from the DAC is used to drive the current amplifier. 
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Figure 5.6:  Top Level Simulink Model. 
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5.2.2 Measurements 
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Figure 5.7:  Measurements Subsystem. 

The Measurements Subsystem (Figure 5.7) reads signals from the DS1102 interface card 
and performs the necessary calibrations.  Output variables are in standard SI units: 
meters, radians, and meters per second. 

Cart position x (via motor angle) and pendulum angle θ are measured using rotary 
quadrature, which are input using the DS1102ENC_POS block.  Matlab calculates counts 
directly from the quadrature, but scales the full counter range to between –1 and 1.  Cart 
Velocity is input using an A/D converter in the DS1102ADC block, which scales the 
input by 1/10. 

Scaling gains (labeled CartPos, PendPos, and CartVel) must account for several effects. 
They must consider the calibration of the sensor, any gearing or circuitry gain involved, 
and the scaling of the DS1102, so that the output is in real units.  The gain expressions, 
which convert the input block to a number representing the physical quantity in SI units, 
are given by 
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A Dither Gain block was used in an earlier attempt to smooth the theta signal 
quantization. Ultimately, this gain was set to zero and the dither was not used.  However, 
if desired, a dither signal could be brought in from ADC #2 on the DS1102. 

All input values from the DS1102 are initialized to zero when the model is compiled. 
The state of the system at the time of compiling will therefore determine the zero value of 
all measurements. As designed, this model should be compiled with the cart stationary 
near the center of the track with the pendulum down and motionless. 

5.2.3 Filter Bank 
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Figure 5.8:  Filter Bank Subsystem. 

Feedback signals are processed in the Filter Bank Subsystem (Figure 5.8).  An array of 
low-pass filters is implemented using Transfer Fcn blocks.  These filters are tuned to 
reduce noise in the feedback signals.  All of these filters have unity DC gain, and have 
break frequencies significantly above system crossover, so they do not affect stability. 

Pendulum angular velocity is calculated using a Derivative block.  This is filtered a 
second time to further reduce noise in the numerical derivative. 
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A repeating theta variable theta_mod is created using the mod function in a Math 
Function block.  While the encoder measuring theta will measure multiple revolutions, 
the mod function subtracts these out, producing an output that is always between 0 and 
2π. This variable is used for the linear controller, so that extra rotations do not produce 
an error.  This is important because the pendulum can reach vertical in either the 
clockwise or counterclockwise direction. 

5.2.3 Input 
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Figure 5.9: Input Subsystem. 

The Input Subsystem (Figure 5.9) explicitly shows the desired values of the state 
variables that the linear controller will stabilize about. These inputs x_d, xdot_d, theta_d, 
and thetadot_d are compared with the feedback measurements, and the error is 
determined. The meaning and units of these setpoints is determined by the feedback 
signal calibration. 

The inputs theta_d and thetadot_d must be set to π and 0, respectively, so that the system 
linearization is valid.  For general operation, the desired value is zero for x_d and xdot_d. 
Input waveforms can be used instead of constants to prescribe movements, within the 
limitations of the system response. 
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5.2.4 Linear Controller 
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Figure 5.10: Linear Controller Subsystem. 

The Linear Controller Subsystem (Figure 5.10) is used to implement the control 
algorithm described in Section 4.1.  State variable errors are combined into a vector using 
the Mux block.  This vector is then multiplied by K, a gain row vector determined using 
lqr in a Matlab script, which is included in Appendix A.  The result is a Force signal in 
Newtons that drives the cart when under linear control.  This system is enabled by the 
Controller Select Subsystem, so it does not run during the standup routine. 

5.2.5 Standup Routine 
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Figure 5.11:  Standup Routine Subsystem. 

The Standup Routine Subsystem (Figure 5.11) implements the controls that bring the 
pendulum to an upward vertical position. This Subsystem is enabled by a command from 
the Controller Select Subsystem, so that it is only executed during the standup routine. 

This level contains basic cart position control.  The measured cart position x is compared 
with a desired position x_d.  The Lead Controller, which is the Simulink implementation 
of the controller described in Section 4.2.1, creates a Force signal based on this error. 
The Force signal is in Newtons, and is the force that should be applied to the cart. 
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The desired position x_d is determined by the Position Generation Subsystem.  This 
Subsystem looks at the current pendulum state, and determines an appropriate cart 
trajectory.  Many algorithms would require both theta and theta_dot as inputs, but this 
one does not, for reasons to be described later. 
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Figure 5.12:  Position Generation Subsystem. 

The Position Generation Subsystem is the primary component of the standup routine 
(Figure 5.12).  Given the pendulum angle, this Subsystem determines a variety of 
information about the pendulum motion and calculates a movement trajectory. 

The Info Subsystem is responsible from creating the command signals and information 
variables necessary to conduct the cart trajectory calculations.  Four variables are 
generated:  routine 1-3, theta_max, theta_min, and section 1-4.  The routine variable is a 
command signal for the Routine Switch for output selection. The variables theta_max and 
theta_min are the highest points to the left and right, respectively, of the last pendulum 
swing. Because of the coordinate system used, theta_max is a positive angle measured in 
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radians and theta_min is a negative angle measured in radians.  The section 1-4 variable 
represents the section of the swing that the pendulum is in, determined by both position 
and direction of motion, as shown in Figure 5.13.  Sections 2 and 4 are active regions, 
where the cart should be moved to increase the energy of the system.  Sections 1 and 3 
are inactive, where the cart should remain at a fixed position. 
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2 3 

4 

q 

Figure 5.13:  Swing section for low amplitude (left) and high amplitude swings (right), 
as assigned by the section 1-4 variable from the Info Subsystem. 

The Amplitude Lookup Subsystem is used to determine the magnitude of the cart 
movement, in meters. As the pendulum swings higher, amplitude is reduced so that the 
pendulum approaches vertical gradually and without significant velocity. The theta_max 
and theta_min variables are used alternately for this calculation, depending on the 
direction that the pendulum is swinging. 

Three routines, Routine 1, Routine 2, and Routine 3, determine the cart trajectory.  They 
correspond roughly to the three steps described in Section 4.2.2 for the standup routine. 
Routine 1 consists of two abrupt changes in cart position, and is designed to get the 
pendulum started. Routine 2 uses smooth movement to add energy efficiently for 
pendulum swings below 100°. Routine 3 also uses smooth movement and is designed for 
higher pendulum swings.  All of these routines take information from the Amplitude 
Lookup Subsystem in order to calculate trajectory magnitude.  In addition, Routine 2 uses 
the theta_max and theta_min variables from the Info Subsystem in order to match the cart 
movement to the current pendulum height.  Output from these routines is selected using 
the Routine Switch and the routine 1-3 command signal from the Info Subsystem. 
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Figure 5.14: Info Subsystem. 

The Info Subsystem (Figure 5.14) generates four variables, which are used to calculate 
and select output trajectories. 

The variables theta_max and theta_min are used to remember the highest point of the last 
swing.  These calculations are done in the Hold Max and Hold Min Subsystems 
(Figure 5.15), which involve the hold reset mechanism that was discussed in Section 5.1. 
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Hold Max holds the greatest positive value of theta, representing a swing to the left, 
while Hold Min holds the greatest negative value of theta, representing a swing to the 
right.  Both measurements are reset to zero in between swings, at a time when they are 
not being used for computation.  As Hold Max represents the highest point left, it is reset 
when the pendulum crosses zero moving left, so each time a new maximum is recorded. 
Likewise, Hold Min is reset when the pendulum crosses zero moving right. The reset 
point is specified by the conditions in the Hit block, which uses a ODE solver to detect 
crossing of a specific value in a specific direction of the input variable.  When output of 
the Hit block goes high, output is forced to zero through the Not and Product blocks. 
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Figure 5.15:  Hold Max (left) and Hold Min (right) Subsystems 

The section 1-4 variable is an integer from 1 to 4 representing the present swing section 
of the pendulum, as shown earlier in Figure 5.13.  Output can be understood from the 4
input Sum block. This block adds integers that check a series of logical conditions.  The 
first Sum input insures that Sum output is 1 when none of the conditions are met.  The 
third sum input adds 2 if the pendulum is on the right side (θ<0).  The second and fourth 
Sum inputs add 1 if the pendulum is in a specific part of the swing, and cannot be 
satisfied simultaneously. 

The second Sum input is true (true has a value of 1 in Simulink) if the pendulum is in 
swing section 2.  This checks that 0°<θ<100° and that the pendulum is swinging 
downwards. Swinging downwards is determined by checking if theta is less than 
theta_max.  Because of the reset point in the theta_max variable, theta equals theta_max 
while the pendulum swings upwards in this region. 

The fourth Sum input is similar to the second, but is true if the pendulum is in swing 
section 4. This involves checking that -100°<θ<0° and that the pendulum is again 
swinging downwards.  In this case, swing downward is determined by checking that theta 
is greater (more positive) than theta_min. 

An alternative method for determining that the pendulum is swinging downward would 
have been to evaluate the sign of pendulum angular velocity theta_dot.  In many aspects, 
both methods would produce equivalent results.  A difference occurs when cart 
acceleration causes pendulum velocity to reverse in mid swing.  This can cause jumps in 
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the section 1-4 variable, leading to discontinuities in the desired position command.  The 
method chosen is more tolerant, but still affected.  Moreover, it is important to use cart 
trajectories that do not reverse the pendulum movement. 

The routine 1-3 variable is also determined by summing logical signals.  The first input to 
Sum1 begins output at 1.  The second input holds the maximum value of done1, a 
variable generated inside the Routine 1 Subsystem that indicates that Routine 1 is 
finished. The third input checks that the pendulum is swing above 100°. But checking 
both theta_max and theta_min, the periodic resets of these variables do not cause routine 
1-3 to drop back to a value of 2.  However, the routine 1-3 variable can drop from 3 to 2 
if the swing amplitude is for some reason reduced below 100°, perhaps through a 
disturbance. 
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Figure 5.16:  Amplitude Lookup Subsystem. 

The Amplitude Lookup Subsystem (Figure 5.16) calculates the amplitude of cart 
movement, based on the current maximum height that the pendulum has reached.  The 
variable amp1 represents the position where the cart should be in swing section 1, at the 
far left. The variable amp3 represents the position where the cart should be at in swing 
section 3, at the far right of the track.  (Recall that the cart should be stationary in swing 
sections 1 and 3.)  The theta_max and theta_min variables are used alternately, so that 
this amplitude is based on the height of the last swing. 

Each amplitude is calculated using a Look-Up Table block.  This block allows for a 
tabular relation between input and output, and performs linear interpolation between 
entries.  The tables are symmetric, with sign differences caused by the sign of the 
pendulum angle and cart position.  Table 5.2 show the corresponding input and output for 
these blocks. Also, the Look-Up Table block itself  depicts a general plot of this relation. 

The Look-Up Table values were tuned by hand until the desired standup routine 
performance was achieved.  Test runs were conducted, beginning with amplitude values 
that were too low throughout the table, so that the pendulum would not reach the inverted 
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position. The maximum angle that the pendulum reached was noted, and the 
corresponding table entry was increased.  Then the test was rerun, the new maximum 
height observed, and this corresponding table entry was increased.  Adjustment gradually 
moved towards the right of Table 5.2.  Values were adjusted until each cart movement 
added a small increment in pendulum height.  If the pendulum was ever thrown to 
vertical too quickly from a particular angle, the corresponding table entry for that angle 
was reduced.  Repeated observations, sometimes with disturbances created, increased the 
robustness of the final tuning. 

theta_min (°) 0 -60 -110 -111 -145 -165 -180 -190 
amp1 (mm) -80 -80 -20 -10 -4.7 -3.4 -2.8 -2.8 

theta_max (°) 0 60 110 111 145 165 180 190 
amp3 (mm) 80 80 20 10 4.7 3.4 2.8 2.8 

Table 5.2:  Corresponding values of input and output using the Lookup Tables in the 
Amplitude Lookup Subsystem. 
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Figure 5.17:  Routine 1 Subsystem. 

The Routine 1 Subsystem (Figure 5.17) outputs cart position commands that start the 
pendulum swinging.  This involves jumping to the right, then left, and then passing 
control on to the next routine. 

Output begins with the Sum output equaling 1 and the Multiport Switch choosing 0.1 
(right) as the desired position x_d.  The desired position switches to a left position, 
determined by the Amplitude Lookup Subsystem, when a condition is true:  The 
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pendulum must be in swing section 4 (moving downwards) at an angle of θ<-π/18. The 
initial cart jump to x=0.1 happens immediately after compiling or as soon as the hardware 
is powered up. Checking that the pendulum in swing section 4 causes the cart to wait 
until the pendulum is swinging downward again before moving left.  Checking that 
θ<-π/18 ensures that this condition is not met prematurely as wind or table motion cause 
the pendulum to rock slightly before the algorithm starts. 

Further logic determines the done1 variable, which is used in the Info Subsystem to 
calculate the routine 1-3 variable.  This algorithm waits for the pendulum to have swung 
back over to the left (θ>π/8) and begin moving downward (swing section 2).  Recall that 
the blocks in the Info Subsystem hold the maximum value of done1, so control is never 
passed back to this routine. 
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Figure 5.18:  Routine 2 Subsystem. 

The Routine 2 Subsystem (Figure 5.18) is used following Routine 1 and raises the 
pendulum up to 100°. This routine uses a smooth trajectory between amp1 and amp3, 
synchronized to match pendulum motion between the high point of the last swing and 0°. 

Output is selected with a Multiport Switch. The four switch inputs correspond to inputs 
for the four different swing sections.  For the inactive sections 1 and 3, the cart should 
remain stationary at a position of amp1 and amp3, respectively. For the active sections, a 
suitable motion should be prescribed, as was discussed in Section 4.2.2.  Recall the 
trajectory described by Equation 4.20: 
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This can be adapted using amp1, amp3, theta_max, and theta_min. A discontinuity is the 
prescribed cart position function is caused between certain swing sections if amp1 and 
amp3 have different values. This will be the case because amp1 and amp3 are reset at 
different times and are based on the pendulum height at different sides of the swing.  A 
solution is to fade linearly between amp1 and amp3 as a function of theta. The result, 
with Simulink variable names substituted for the theoretical variables in Equation 5.4 is 
shown below. The terms in brackets are the expressions for amplitude A. The 
trajectories x_d2 and x_d4 for swing sections 2 and 4, respectively, are given by 
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The negative signs in front of amp1 are necessary because the value is calculated as a 
negative number by the Amplitude Lookup Subsystem. Referring back to Figure 5.18, 
the trajectories given by Equations 5.5 and 5.6 are implemented by first combining 
variables into a vector and then using a Fcn block to express a vector function. 
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Figure 5.19:  Routine 3 Subsystem. 

The Routine 3 Subsystem (Figure 5.19) performs a similar function as Routine 2, but is 
designed for high pendulum swings.  For large swings, it is no longer necessary, in fact 
inefficient, to distribute cart movement between the pendulum angles of theta_max and 
0°. Instead, movement should be distributed between some fixed high angle (100° was 
used) and 0°. This involves a simpler calculation with a constant θmax in the denominator 
of Equation 5.4. Amplitude blending and Simulink implementation is very similar to that 
of Routine 2. 

Both Routines 2 and 3 exhibit an undesirable property: an effective delay in amplitude 
adjustment. Because amplitude is blended between amp1 and amp3, it is calculated from 
the last two swing high points (left and right) instead of only the most recent.  The 
problem stems from the fact that all cart movements are centered around x=0, so the total 
displacement depends on both the new and previous desired positions.  If the Amplitude 
Lookup Subsystem calculates an amplitude that would be appropriate for the total cart 
displacement, then this effect creates an error. 

This error decreases the robustness of the standup routine, and adds difficulty to the 
tuning of the amplitude Look-Up Tables.  The sign of the error depends on whether the 
maximum pendulum swing height is increasing or decreasing on successive swings.  If 
the pendulum is gaining height on each swing, amplitude is gradually being reduced, and 
the delay error creates extra cart movement.  If the pendulum begins losing height, 
amplitude is being increased, and the delay error creates a reduction in amplitude. 
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The delay error was easily overcome.  If the pendulum is raised gradually, this error is 
insignificant.  However, different schemes could be implemented where cart movements 
were not centered around x=0.  This would require either a memory of the last position, 
or prescribing velocity and integrating.  The difficulty with these methods is that the cart 
must remain between the end stops of the track. 

5.2.6 Controller Select 
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Figure 5.20:  Controller Select Subsystem. 

The Controller Select Subsystem (Figure 5.20) chooses between the Standup Routine and 
Linear Controller Subsystems by creating two enabling signals.  This system checks that 
|θerror|<0.005, meaning that the pendulum is very close to vertical.  At start, the pendulum 
is down, so this condition is not met, giving Enable Linear a value of zero and Enable 
Standup a value of one. The standup routine is thus run, until it brings the pendulum to 
vertical and the condition is met.  Once this condition is met, it will be held using the 
Max and Unit Delay configuration, enabling the Linear Controller and disabling the 
Standup Routine. 

The condition for switching to linear control could be improved using more information. 
In addition to pendulum position, calculations could involve pendulum velocity or 
energy.  Smarter algorithms could consider the current position of the cart, so that the 
track could best be utilized for stabilization.  These ideas, however, are unnecessary for 
operation. 

It should be noted that for theta_e an absolute value less-than block combination was 
used instead of an equality. This is because with digital processing there is no guarantee 
that the pendulum position error is actually equal to zero in any given sample period, 
even if the error crosses zero.  As alternative would be to use a Hit Crossing block, which 
uses an ODE solver to detect a crossing.  Unfortunately, a Hit Crossing in this Subsystem 
consistently registered a hit at compile time.  This was probably because theta_e, like 
most variables, was initialized to zero.  The extra hit in this configuration caused the 
selection to jump directly to the Linear Controller without any Standup Routine. 
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5.2.8 Error Processor 
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Figure 5.21:  Error Processor Subsystem. 

The Error Processor Subsystem (Figure 5.21) is not directly involved in the balancing of 
the pendulum, but is important for safety and hardware protection.  Program malfunctions 
often produce unstable response, which drives the cart violently against the end stops. 
The function of this subsystem is to evaluate several error conditions, and to cutoff output 
if these condition are met. 

Review of the top level model (Figure 5.6) shows that the cutoff signal from this block is 
the command signal to the Error Cutoff switch.  A command signal of 1 allows the 
Control Effort signal from either controller to be passed through to the output.  A 
command signal of 2 disconnects the controller signal and instead passes a value of 0 to 
the output. 

The error conditions in the Subsystem can be expanded.  Here, two primary conditions 
have been included. The first condition checks to see if the cart is near the end of the 
track. The second condition determines if the pendulum is under linear control and is at a 
large angle from upward vertical.   If any error condition is met (this can be expanded to 
handle more error condition by using an Or block with more inputs), the error signal is 
held high, cutoff equals 2, and system output is cut off. 

Resetting errors in this model requires recompiling.  This is undesirable, and can be 
corrected using a hold-reset configuration instead of the simple hold.  The reset signal 
could be driven externally, using either a physical reset switch connected to a digital I/O 
pin on the dSpace board or a virtual switch from Cockpit or Trace software to interrupt 
the simulation. For implementation, certain other variables, such as routine 1-3 and 
done1, would have to be reset to an appropriate starting point. 
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5.2.9 Control Effort 
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Figure 5.22:  Control Effort Subsystem. 

The Control Effort Subsystem calibrates and outputs the Control Effort to the DS1102. 
The input Force refers to the force, in Newtons, that should be delivered to the cart.  For 
calibration, a gain is necessary which counteracts gains in the dSpace DAC write, current 
amplifier, and motor. 
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6. Recommendations 

Although the current system is fully function, several improvements can be made.  These 
are outlined here for the benefit of anyone continuing this project, and to increase the 
general understanding of the subject.  Many of these recommendations are also covered 
in specific sections of this report. 

When cart position control was designed for the standup routine (Section 4.2.1), a 
significant discrepancy between theoretical predictions and experimental results was 
discovered. This was attributed to unmodeled effects, and was overcome by adjusting 
gain to match the experimental response.  However, design of the linear controller is 
based completely on theoretical behavior, and involves many of the parameters found to 
be in error for cart position control.  While the linear controller is functional, it is 
suspected that improvements could be made if this discrepancy were resolved.  It is 
therefore recommended that additional behavior, including dry friction, belt compliance, 
and motor and amplifier dynamics, be considered.  Alternatively, some of these effects 
could be reduced or eliminated. 

The physical hardware is unsuccessful at constraining the pendulum to planar motion.  In 
fact, a mode of vibration exists in which the pendulum deflects in a direction parallel to 
its axis of rotation.  This unfortunately couples with cart motion, despite their 
orthogonality.  This causes a resonance at a frequency of about 9.5 Hz, producing 
significant jitter in linear control.  This mode should be eliminated by replacing the 
pendulum joint and rod with a structure that is rigid in this direction. 

The Simulink model could be improved in several ways, which were discussed at 
appropriate points in Section 5. A significant improvement would be to allow for resets 
of the model without recompile. The current model runs the routine only once per 
compile, and will shut off when errors occur.  It would be desirable to have an external 
reset switch that would restart the routine. 

A second modification of the Simulink model involves the cart motions in the standup 
routine. Currently, all motion is centered about x=0.  This is undesirable because the 
total magnitude of each movement depends on the starting position.  The solution is to 
prescribe cart movement magnitudes, instead of prescribing the next desired location. 
This can be accomplished either be prescribing velocity and integrating, or by calculating 
the new desired position relative to the previous one.  Implementing such a scheme 
would improve standup routine reliability and allow for faster standups. 

A final recommendation is to use a reduced-order observer for the determination of 
&pendulum angular velocity θ . Such an implementation would eliminate the numerical 

derivative that is used in the current model.  It must be noted that this observer can only 
be used for linear control, where the system can be modeled using a LTI system.  Also, 
the observer must be initialized correctly at an appropriate time. 
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Appendix A:  Matlab Scripts and Function Files 

File: setup.m 
Description: This file contains model parameters and generates controllers for linear 
state control and for cart position control.  Also included is the notch filter and several 
general system parameters.  The calculated variables are used in the simulations and in 
the real-time Simulink-based controllers. 

% setup.m

clear all; close all;


%System Parameters

m = 0.15;

l = 0.314;

M = 1.3 + 3.6e-4/(0.04^2);%includes motor inertia

I = 7.38e-5;%ignored

g = 9.80665; 
km = 4.4825; % N/A 
kdac = 20; % scaled DAC write, includes Amp gain 
b = 20; 
Mt=M+m; 

%State Space Representation

A = [0 1 0 0; 0 -b/M -m*l/M 0; 0 0 0 1; 0 b/(M*l) Mt*g/(M*l) 0];

B = [0; 1/M; 0; -1/(M*l)];

C = [1 0 0 0; 0 1 0 0; 0 0 1 0];

D = [0; 0; 0];


sysp = ss(A,B,C,D);


Q = zeros(4,4);

Q(1,1) = 1;

Q(2,2) = 1e-4;

Q(3,3) = .5;

Q(4,4) = 1e-4;

R = 1e-5;


K = lqr(A,B,Q,R);

%K = [-316.2278 -186.3904 -479.6232 -72.6099];


%Generate Plots

c_poles=eig(A-B*K)

poles=eig(A);


figure(1);

sys_cl = ss(A-B*K,zeros(4,1), [eye(4); -K], zeros(5,1));

x0 = [0; 0; 0.01; 0];

initial(sys_cl,x0);


figure(2);

plot(real(poles),imag(poles),’kx’,real(c_poles),imag(c_poles),’k.’);

legend(’Original’, ’Controlled’);

grid;
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title(’System Poles’);

xlabel(’Real Axis’);

ylabel(’Imaginary Axis’);


% create a notch filter at the resonant frequency

[numn,denn] = butter(3,2*pi*[90 120],’stop’,’s’);


%Controller (lead), label 2, Values for lag are included, but not used.

Ka=2;

Gsys=tf([0 0 1],[M+m b 0]);

wc=40;

wctr=wc;

Kc=10*274.5909;

a1=5;


t1=1/(wctr*sqrt(a1));

t3=1/(wc/50);%lag

a3=10;

Glead_num=Kc*[a1*t1 1];

Glead_den=[t1 1];

Glag_num=a3*[t3 1];

Glag_den=[a3*t3 1];

Gc_num=conv(Glead_num,Glag_num);

Gc_den=conv(Glead_den,Glag_den);

Glead=tf(Glead_num,Glead_den);

Glag=tf(Glag_num,Glag_den);

Gc2=Glead*Glag;

L2=Glead*Glag*Ka*km*Gsys;


%For controller design

[m p]=bode(L2,wc);

1/m


%standup params (many were ultimately not used)

c=0.07;

theta_high=100*pi/180;

sample_T=0.0005;

sat=40/Kc;%not used


File:  swing.m 
Descirption:  Numerical simulation of cart and pendulum movements.  Cart movement is 
defined by Equation 4.20 in this report.  This script calls the function ‘ydot’, included, 
which defines the system differential equations. 

%swing_r

global A t_max;


t_max=100*pi/180;%Angle at which cart motion begins

%motion ends at theta=0

A=.06;%cart motion amplitude

y0=[160*pi/180 0];%initial angle and velocity of pendulum


[t y]=ode45(’ydot’,[0 1],y0);%use ODE solver for theta and theta_dot

theta=y(:,1);
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theta_deg=theta*180/pi;


%calculate cart position x from theta

n=size(t);

x_d=zeros(n);

for i=1:n


if and(theta(i)<t_max, theta(i)>0)

 x_d(i)=A*cos(theta(i)*pi/t_max);


else if theta(i)>t_max

 x_d(i)=-A;


else

x_d(i)=A;


end

 end


end


%plot x and theta vs. time

plot(t,theta_deg,’-’,t,1000*x_d,’--’);

title(’Pendulum Response Under Prescribed Cart Movement’);

xlabel(’Time (sec)’);

ylabel(’Pendulum Angle (deg) and Cart Position (mm)’);

legend(’Pendulum Angle’, ’Cart Position’)


File: ydot.m 
Description:  Matlab function defining the system differential equation  General 
dynamics were derived in Equation 4.17, where &&x  is defined by 4.22.  Because x is a 
function of θ, differential analysis involves only θ and θ& . 

function dydt=ydot(t,y);


global A t_max;%use values set in the swing.m file


theta=y(1);

theta_dot=y(2);


g=9.8;

l=.314;


ddt_theta=theta_dot;


if and(theta<t_max, theta>0)%Cart moving, ddt_theta_dot involves cart

acceleration


 ddt_theta_dot=(-(A*pi^2/t_max^2)*cos(theta*pi/t_max)*theta_dot^2-

g*tan(theta) )/( l/cos(theta)+(A*pi/t_max)*sin(theta*pi/t_max) );

else%cart stationary, x_double_dot=0


ddt_theta_dot=-g*tan(theta)*cos(theta)/l;

end


dydt(1)=ddt_theta;

dydt(2)=ddt_theta_dot;

dydt=dydt’;
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Appendix B: Operating the Pendulum-Cart System 

1. Check the Hardware 

The system has several components, currently wired together but not physically 
inseparable. You should have (1) a large platform with pendulum-cart and motor, (2) a 
current amplifier, and (3) a small aluminum box housing a circuit and a DS1102 interface 
card. There are two switches; set them to OFF and DISABLE. Check that the amplifier 
is plugged in, and that the computer is connencted to the interface card.  Be sure that the 
pendulum motion is unobstructed for all cart and pendulum positions. 

2. Software 

To operate the pendulum system, you need two files: the Simulink model pendem.mdl 
and a Matlab script setup.m. For simplicity, copy both files to a common directory, and 
run Matlab in that directory. 

At the Matlab prompt: 
Type ‘setup’ to run setup.m. 
Type ‘pendem’ to open Simulink with the pendem.mdl Simulink model. 

3. Building the Simulink model 

Before you build, the hardware must be set accordingly: 
1) Make sure the ‘Enable/Disable’ switch is set to DISABLE. 
2) Set amplifier switch to ON (this affects velocity measurement initialization). 
3) Center the Pendulum on the track, and stabilize with pendulum down. 

Now build the model, using RTW Build in the Simulink Tools menu. 

Wait until the model is built, then flip the ‘Enable/Disable’ switch to ENABLE to begin 
routine.  Cart and pendulum motion will begin immediately. 

4. Operation Notes: 

If the system malfunctions, flip the ‘Enable/Disable’ switch to DISABLE. Make sure 
this switch is safely away from pendulum motion (before you compile). 

The model also disables under certain error conditions, sending zero to output.  If it 
disables, it is necessary to recompile the model.  You can deliberately disable the model 
by using these error conditions: move the cart to the end of the track or cause a pendulum 
angle of more than 45° from vertical while the system is under linear control. 

If the ‘Enable/Disable’ switch is set to ENABLE while compiling, Pendulum motion will 
begin when compiling is complete.  However, while compiling, output is commanded by 
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the previous DSP application. This is fine only if this model was the previous application 
and an error condition was met. Otherwise, make sure the ‘Enable/Disable’ switch is set 
to DISABLE. 

5. Cockpit Interface 

A Cockpit file, called pendem.css, has been included.  This file contains displays of the 
state variables and other basic model parameters.  To use, run cockpit, then open pendem 
from the Cockpit File menu. After compiling the Simulink model, load the trace file 
pendem, using the Cockpit File menu.  Click on the Start button to begin. 
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