Quiz 3 Review: Circuits and Bode plots.

Circuits and the impedance method.

$$
Z(s) \equiv \frac{E(s)}{I(s)}
$$

$$
\begin{aligned}
& \text { capacitor }(\mathrm{C}) Z_{C}=\frac{1}{C s} \\
& \text { resistor }(\mathrm{R}) Z_{R}=R \\
& \text { inductor }(\mathrm{L}) Z_{L}=L s \\
& \hline
\end{aligned}
$$

2 impedances in series, vs. 2 impedances in parallel.

3 impedances all in series with one another.

$$
Z_{e q}=Z_{1}+Z_{2}+Z_{3}
$$

3 impedances all in parallel with one another.

$$
Z_{e q}=\left(Z_{1} \mid Z_{2}\right)\left|Z_{3}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}\right| Z_{3}=\frac{\left(\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}\right) Z_{3}}{\left(\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}\right)+Z_{3}}=\frac{Z_{1} Z_{2} Z_{3}}{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{1} Z_{3}}
$$

Ex. 1

Ex. 2
a) $\frac{I(s)}{E_{i}(s)}=$?
b) $\frac{E_{o}(s)}{E_{i}(s)}=$?
c) Bode plot for $\frac{E_{o}(s)}{E_{i}(s)}$?

a) $\frac{E_{o}(s)}{E_{i}(s)}=$?
b) Bode plot for $\frac{E_{o}(s)}{E_{i}(s)}$?

a) $\frac{E_{o}(s)}{E_{i}(s)}=$?
b) Bode plot for $\frac{E_{o}(s)}{E_{i}(s)}$?

a) $\frac{E_{o}(s)}{E_{i}(s)}=$?
b) $\frac{E_{o}(s)}{E_{i}(s)}$ can be written in the form $\frac{E_{o}(s)}{E_{i}(s)}=\frac{K s(\tau s+1)}{\left(a s^{2}+b s+1\right)}$. What are K, τ, a, and b in term of the electrical components $\left(R_{1}, C, R_{2}, L\right)$?

a) $\frac{I(s)}{E_{i}(s)}=$?
b) Sketch the Bode plot for $\frac{I(s)}{E_{i}(s)}$
($L=1 H, R_{1}=100 \Omega, R_{2}=900 \Omega$).

Ex. 6

a) $\frac{E_{o}(s)}{I_{i n}(s)}=$?
b) Sketch the Bode plot for $\frac{I(s)}{E_{i}(s)}$
($L=1 H, R_{1}=100 \Omega, R_{2}=900 \Omega$).

Mechanically equivalent circuits.

Bode plots.

One method to make (or analyze) a Bode plot.

1) Put the transfer function into the form:

$$
\begin{equation*}
\left[K s^{p}\right] \cdot\left[\frac{\left(\frac{s}{z_{1}}+1\right)\left(\frac{s}{z_{2}}+1\right) \ldots\left(\frac{s}{z_{m}}+1\right)}{\left(\frac{s}{p_{1}}+1\right)\left(\frac{s}{p_{2}}+1\right) \ldots\left(\frac{s}{p_{n}}+1\right)}\right] \tag{1}
\end{equation*}
$$

2) At low freq ($s \approx 0$), the RHS in eqn 1 is unity (1), so we can now draw a low frequency asymptote based on the LHS alone. (Note p is of course just an integer equal to the number of zeros at the origin minus the number of poles at the origin.)

$$
K s^{p}
$$

We can pick any value of ω, calculate $K \omega^{p}$ at this frequency, and draw a line through this point with slope p. $s=1$ is often a useful point to choose, because $1^{p}=1$ for any p ! The low frequency phase will be $p \cdot 90^{\circ}$ (if $K>0$).
3) Find all break points (poles and zeros) by looking at the RHS and indicate where they will occur on the plot, so we can get ready for step 4 . (Remember to use ω_{n} for any complex pairs.)
4) Start on the low frequency asymptote at a frequency below any breakpoints. Moving toward higher frequencies, "break" at each breakpoint. The slope will change by +1 $(20 \mathrm{~dB} / \mathrm{dec})$ for each zero or by $-1(-20 \mathrm{~dB} / \mathrm{dec})$ for each pole at a particular breakpoint. (Remember there can be two or more at one particular frequency.) The phase will change by $+90^{\circ}$ for each zero or by -90° for each pole at a particular frequency (if these poles or zeros are in the left-half plane).

Ex. 1 On the axes provided, sketch the Bode plot for the transfer function

$$
H(s)=\begin{gathered}
(s+10) \\
s
\end{gathered}
$$

Be sure to label the axes as appropriate!

Ex. 2 On the axes provided, sketch the Bode plot for the transfer function

$$
H(s)=\frac{20(s+0.1)(s+2)}{s(s+40)}
$$

Be sure to label the axes as appropriate!

Ex. 3 What is the transfer function $H(s)$ represented by the Bode plot below?

The plot below shows a good starting point. You should recognize this transfer function is of the form $H(s)=K_{d c} \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}$. We can find ω_{n} where the phase is -90° : $\omega_{n}=2 \mathrm{rad} / \mathrm{s} . K_{d c}$ is the DC (low frequency) of the magnitude: $K_{d c}=10^{(40 / 20)}=100$. At ω_{n}, the magnitude is at $M\left(\omega_{n}\right)=10^{(60 / 20)}=1000 . M\left(\omega_{n}\right) / K_{d c}=\frac{1}{2 \zeta}=1000 / 100$. So $\zeta=1 /(2 \cdot 10)=0.05$.

$$
\begin{aligned}
H(s) & =\left[100 s^{0}\right] \cdot\left[\frac{2^{2}}{s^{2}+2 \cdot .05 \cdot 2+2^{2}}\right] \\
& =\frac{400}{s^{2}+0.2 s+4}
\end{aligned}
$$

Ex. 4 What is the transfer function $H(s)$ represented by the Bode plot below?

We can assume there is a zero at the origin, because the slope is $+20 \mathrm{~dB} / \mathrm{dec}$ and the phase is $+90^{\circ}$ at low frequency. Therefore the LHS of the TF will be $K s^{1}=K s$. To find K, we can extend the low frequency asymptote, and its value at $1 \mathrm{rad} / \mathrm{sec}$ is K. This is difficult to estimate, so we can look at any other frequency that looks more convenient. At $\omega=0.02 \mathrm{rad} / \mathrm{s}$, the magnitude is $0 \mathrm{~dB}=1$, so $K \cdot 0.02=1.0, K=1 / 0.2=50$. There are then two breakpoints, both poles, so the phase goes to -90° and the slope is $-20 \mathrm{~dB} / \mathrm{dec}$ at high frequency. We can use either phase (at -45 and -135) or magnitude (estimating where asymptotes intersect) to find that the poles are at approximately 0.2 and $5.0 \mathrm{rad} / \mathrm{s}$.

$$
\begin{aligned}
H(s) & =[50 s] \cdot\left[\frac{1}{\left(\frac{s}{2}+1\right)\left(\frac{s}{5}+1\right)}\right] \\
& =\frac{50 s}{(s+.2)(s+5)}
\end{aligned}
$$

