Elements of Polymer Structure and Viscoelasticity

David M. Parks Mechanics and Materials II 2.002 February 18, 2004

Outline

Elements of polymer structure
Linear vs. branched;
Vinyl polymers and substitutions
Packing of polymer chains

Random/amorphous
Glass transition temperature, T_G
Semi-crystalline
Crystalline volume fraction; melting temperature
Amorphous T_G

Elements of linear viscoelasticity

Creep and relaxation
Analogue models

Idealized Linear Elastic Response

Linear elasticity: $\sigma(t) = E \epsilon(t)$

Note: units of E are stress.

[NO] Relaxation

Idealized Linear Viscous Response

Note: units of η are stress \times time e.g., sec \times MPa

The strain rate (and therefore stress) becomes arbitrarily large during an infinitesimal time interval, and then, like the strain-rate, goes to zero

η

Maxwell Model: an Idealized Linear Viscoelastic Response

$$\begin{aligned} \epsilon(t) &= \epsilon_{\text{elastic}}(t) + \epsilon_{\text{viscous}}(t); \\ \dot{\epsilon}(t) &= \dot{\epsilon}_{\text{elastic}}(t) + \dot{\epsilon}_{\text{viscous}}(t) \\ &= \dot{\sigma}(t)/E + \sigma(t)/\eta \end{aligned}$$

For times near the finite stress jump, all strain occurs in the elastic element;
During the hold period, all strain occurs in the viscous element

Maxwell Model: an Idealized Linear Viscoelastic Response

Relaxation:

 $\begin{aligned} \epsilon(t) &= \epsilon_{\text{elastic}}(t) + \epsilon_{\text{viscous}}(t); \\ \dot{\epsilon}(t) &= \dot{\epsilon}_{\text{elastic}}(t) + \dot{\epsilon}_{\text{viscous}}(t) \\ &= \dot{\sigma}(t)/E + \sigma(t)/\eta \end{aligned}$

INPUT:

For times > 0, d ε(t)/dt=0
During the hold period, elastic strain is traded for viscous strain, and stress drops:

$$0 = \frac{d\sigma(t)}{dt} + \frac{E}{\eta}\sigma(t) \Rightarrow$$

$$\sigma(t) = \sigma(t=0) \exp -t/(\eta/E)$$

$$= \epsilon_0 \times E \exp -t/(\eta/E)$$

Characteristic relaxation time: $\tau = \eta / E$

"Real" Polymer Relaxation (an Idealization)

Testing of real polymers under relaxation can be used to extract a time-dependent relaxation modulus, $E_r(t)$; Short-term response: E_{rg} ; Long-term response: E_{re}

$$E_r(t) \equiv \sigma(t)/\epsilon_0;$$

$$E_r(t \to 0^+) \equiv E_{rg}$$
 (glassy)

 $E_r(t \to \infty) \equiv E_{re}$ (equilibrium)

NOTE: provided $|\varepsilon_0|$ is sufficiently small (typically, less than 0.01), the relaxation modulus, $E_r(t)$, is approximately independent of ε_0 .

"Real" Polymer Creep: (an Idealization)

Testing of real polymers under suddenlyapplied constant stress can be used to extract a time-dependent creep function, $J_c(t)$; Short-term response: J_{cg} ; Long-term response: J_{ce}

 $J_c(t) \equiv \epsilon(t)/\sigma_0;$ $J_c(t \to 0^+) \equiv J_{cg}$ (glassy) $J_c(t \to \infty) \equiv J_{ce}$ (equilibrium)

Note: units of $J_c(t)$: 1/ stress

NOTE: provided $|\epsilon(t)|$ remains sufficiently small (typically, less than 0.01), the creep function, J_c(t), is approximately independent of σ_0 .

Relaxation Modulus, $E_r(t)$ and Creep Function, $J_c(t)$: Inverse Functions of Time?

Function [Dimensions	Trend
------------	------------	-------

$J_c(t)$	1/stress	starts small;	grows	with	time

 $E_r(t)$ stress starts large; decays with time

QUESTION: Are these inverse functions? Is $J_c(t) \times \mathbb{E}_r(t) \equiv 1$ for all times?

•ANSWERS: In general, they are not precise inverses. However,

Equilibrium and glassy values are <u>nearly</u> inverse:
For intermediate times, t. the error in assuming that they are inverse is typically only a few per cent at most...

$$J_c(t \rightarrow 0^+) \doteq 1/E_r(t \rightarrow 0^+);$$

$$J_c(t \to \infty) \doteq 1/E_r(t \to \infty)$$
, but

$$J_c(t) \times E_r(t) \neq 1.$$

<u>Linearity</u> of Response (an Idealization)

If creep response to stress jump σ_0 is

$$\epsilon(t) = J_c(t) \times \sigma_0,$$

then the creep response to stress jump $\phi \times \sigma_0$ (where ϕ is a proportionality constant) is

$$\epsilon(t) = J_c(t) \times (\phi \sigma_0).$$

NOTE: similar linear scaling of stress relaxation response applies.

Superposition of Loading

Suppose that the stress history input consists of a sequence of stress jumps, $\Delta \sigma_i$, applied at successive times t_i , with $t_0=0$:

THEN, the resulting strain history is given by

$$\epsilon(t) = \Delta \sigma_0 J_c(t) + \Delta \sigma_1 J_c(t - t_1) + \Delta \sigma_2 J_c(t - t_2) + \dots$$

=
$$\sum_{j=0} \Delta \sigma_j J_c(t - t_j)$$

Special Case: Load/Unload

Correspondence Principle

•Suppose that a given load, P, produces displacement vector $\mathbf{u}(\mathbf{x})$ in a linear elastic body having Young's modulus E.

•The displacement vector depends on the position vector

 $\mathbf{x} = \mathbf{x} \mathbf{e}_{\mathbf{x}} + \mathbf{y} \mathbf{e}_{\mathbf{y}} + \mathbf{z} \mathbf{e}_{\mathbf{z}}.$

•The magnitudes of the displacement and strain components are proportional to P and inversely proportional to E.

EXAMPLE: Three-point Mid-span bending:

$$\Delta = -v(x = L/2) = \frac{PL^3}{48IE}$$

Correspondence Principle

•Now suppose that a given load jump, P(t),

is applied to a geometrically identical linear viscoelastic body having creep function $J_{\rm c}(t).$

•All stress components in the body are time-independent, and spatially vary <u>precisely</u> as they do in an identical linear elastic body subject to the same load.

•The loading produces time-dependent displacement vector $\mathbf{u}(\mathbf{x},t)$ and corresponding strain components.

•The magnitudes of the displacement and strain components are proportional to both P and $J_c(t)$.

Correspondence Principle

Suppose that a given displacement jump, ∆(t), is applied to a geometrically identical <u>linear viscoelastic</u> body having stress relaxation modulus E_r(t).
All displacement and strain components everywhere in the body are time-independent, and <u>precisely</u> equal those in an identical linear elastic body subject to the same applied displacement.
These boundary conditions produce time-dependent loads, P(t), and stresses
The magnitudes of the time-dependent load and of the stress components are proportional to both ∆ and to E_r(t).

EXAMPLE: Three-point Mid-span bending:

$$P(t) = \frac{48I}{L^3} \times \Delta \times E_r(t)$$

For suddenly-applied <u>displacement</u>, replace "E" with " $E_r(t)$ " in an elastic solution.

