MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering 2.001 Mechanics and Materials I

Fall 2006

Problem Set 4

Distributed: Wednesday, October 4, 2006
Due: Wednesday, October 11, 2006
Problem 1: A structure is attached to a wall by a fixed support as shown in the diagram below. From point A to point B, the structure is a cylinder with radius R_{1}. From point B to point C , the structure is a cylinder with radius R_{2}. Before the structure is loaded at point B with the force P, the length of each cylinder ($A B$ and $B C$) is L. The entire structure is made of the same material, which has a Young's modulus of E. Find the strain $\varepsilon(\mathrm{x})$ and the displacement $\mathrm{u}(\mathrm{x})$ of each point x along the length of the structure, and plot them vs. x . What is the total deformation δ_{AB} of cylinder AB when the load is applied? What is the total deformation δ_{BC} of cylinder BC when the load is applied?

Problem 2: A rigid bar is supported by a pinned support at point B and by two deformable bars at points C and D as shown in the diagram below. Each deformable bar has a Young's modulus of E and a length L. The bar attached at D has a cross-sectional area of A , and the bar attached at C has a cross-sectional area of 2 A . What is the displacement of point D and what are the forces in bars C and D when the load P is applied?

Problem 3: Do Hibbeler’s problem 3.16. (E = 200 GPa for steel.)
Problem 4: Do Hibbeler's problem 4.27.
Problem 5: Do Hibbeler's problem 4.21.
Problem 6: Do Hibbeler's problem 4.33.
Problem 7: A cylinder is attached to a wall at point A by a fixed support as shown in the diagram below. The half of the cylinder from point A to point B is made of steel ($\mathrm{E}=$ 200 GPa) and has a length of 1 m and a diameter of 1 cm ; the half of the cylinder from point B to point C is made of aluminum ($E=70 \mathrm{GPa}$) and has a length of 1 m and a diameter of 1 cm . Before the cylinder is loaded, the free end (point C) is separated from a second wall by a distance of 0.5 mm .
a) At what value of the load P does the cylinder first touch the second wall?
b) At what value of the load P does the strain at the points between B and C equal 0.1% ? (That is, what is P when $\varepsilon($ inside the Al$)=0.1 \%$?).

