MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Mechanical Engineering 2.001 Mechanics and Materials I

Fall 2006

Problem Set 2

Distributed: Wednesday, September 20, 2006
Due: Wednesday, September 27, 2006
Problem 1 (Based on Crandall, Dahl and Lardner 1.37):
A circular cylinder A rests on top of two half-circular cylinders B and C, all having the same radius r . The weight of A is W , and that of B and C is $\mathrm{W} / 2$ each. Assume that the coefficient of friction between the flat surfaces of the half-cylinders and the horizontal table top is μ_{s}. Determine the maximum distance d between the centers of the half cylinders to maintain equilibrium.

Problem 2: For the beam shown below, find the internal forces and moments as a function of length x along the beam at the points indicated by the dotted lines. Plot your results as a function of x, and explain why your results make sense.

Problem 3: For the beam shown below, find the internal forces and moments as a function of length x along the beam at the points indicated by the dotted lines. Plot your results as a function of x, and explain why your results make sense.

Problem 4: For the beam shown below, find the internal forces and moments as a function of x at the points indicated by the dotted lines. For the "cut" between points C and D , calculate the internal forces and moments in two ways. First use the left piece of the beam, and then use the right piece of the beam. Plot your results as a function of length x along the beam, and explain why your results make sense.

Problem 5: Find the internal forces and moments as a function of x at the points indicated by the dotted lines in the bar AD shown below. Plot your results vs length along AD , and explain why they make sense.

