LECTURE 8

Hydraulic machines and systems II

Basic hydraulic machines \& components

Graphical Nomenclature

\odot Arrows show direction of flow

Example I - Pump \& cylinder

Solve for the the velocity of piston and the force exerted by piston
Note where power crosses into and out of the system boundary

Example I - Pump \& cylinder cont.

Force exerted by piston:
$\begin{array}{llll}\odot & F_{c y l} & =A_{c y l} \Delta p_{c y l} & \\ \odot & \Delta p_{c y l} & =p_{3}-p_{4} & =1014 \text { psi }-14 \mathrm{psi}=1000 \mathrm{psi} \\ \odot & F_{\text {cyl }} & =10 \text { in }^{2} \quad 1000 \mathrm{lbf} / \mathrm{in}^{2} & \end{array}$

If we know F and v , we know the power output of the cylinder
\odot At the boundary of the hydraulic system we see one inflow \& one outflow of power

- From the power balance:
$\odot \quad \Sigma \mathrm{P}_{\text {in }}=\Sigma \mathrm{P}_{\text {out }}+\Sigma \mathrm{P}_{\text {loss }}+\Sigma\left(\mathrm{dE} \mathrm{s}_{\text {stored }} / \mathrm{dt}\right)$; If $\mathrm{P}_{\text {loss }} \&\left(\mathrm{dE} \mathrm{E}_{\text {stored }} / \mathrm{dt}\right)$ are small compared to $P_{\text {out }}$:
$\checkmark \quad \Sigma P_{\text {in }} \sim \Sigma P_{\text {out }}$
$\checkmark \mathrm{T}_{\mathrm{p}} \omega_{\mathrm{p}} \sim \mathrm{F}_{\mathrm{cyl}} \mathrm{V}_{\mathrm{cyl}}$
$\checkmark \mathrm{v}_{\mathrm{cyl}} \sim\left(\mathrm{T}_{\mathrm{p}} \omega_{\mathrm{p}}\right) / \mathrm{F}_{\mathrm{cyl}}$

$$
=(10 \mathrm{in}-\mathrm{lbf})\left(1000 / 2 \pi \mathrm{rev} /{ }_{\text {min }}\right)(2 \pi \mathrm{rad} / \mathrm{rev})(1 / 60 \mathrm{~min} / \mathrm{s}) /(10000 \mathrm{lbf})
$$

$=0.0167 \mathrm{in} / \mathrm{s}$

- Always check and list your units!!!

Example II - Pump, motor, \& cylinder

Given the diagram, solve for T_{m} and ω_{m}

Example II - Pump, motor, \& cylinder cont.

Motor speed: We know that the mass flow rate through the pump and motor has to be the same. As we assume the liquid is incompressible, this means the volumetric flow rate is the same:
$\odot Q_{p} \quad=\omega_{p} D_{p}=Q_{m}=\omega_{m} D_{m}$
$\odot \omega_{m} \quad=\omega_{p}\left(D_{p} / D_{m}\right)$
$=\left[1000 /(2 \pi)^{\mathrm{rev}} /\right.$ min $]\left[\left(0.5 \mathrm{in}^{3} / \mathrm{rev}\right) /\left(1 \mathrm{in}^{3} / \mathrm{rev}\right)\right]=500 /(2 \pi)^{\mathrm{rev} /} / \mathrm{min}$
Motor torque:
$\odot \quad \Sigma \mathbf{P}_{\text {in }}=\Sigma \mathbf{P}_{\text {out }}+\Sigma \mathbf{P}_{\text {loss }}+\Sigma\left(\mathrm{dE} \mathrm{s}_{\text {stored }} / \mathrm{dt}\right) ;$ If $\mathrm{P}_{\text {loss }} \& \mathrm{dE}_{\text {stored }} / \mathrm{dt}$ are small compared to $\mathrm{P}_{\text {in }}$: $\checkmark \Sigma P_{\text {in }} \sim \Sigma P_{\text {out }}$
$\checkmark \mathrm{T}_{\mathrm{p}} \omega_{\mathrm{p}} \sim \mathrm{T}_{\mathrm{m}} \omega_{\mathrm{m}}+\mathrm{F}_{\text {cyl }} \mathrm{v}_{\text {cyl }} \sim \quad \mathrm{T}_{\mathrm{m}} \omega_{\mathrm{m}}+\left(\Delta \mathrm{p}_{\text {cy }} \mathrm{A}_{\text {cy }}\right) \mathrm{V}_{\text {cyl }}$
$\checkmark \mathrm{T}_{\mathrm{m}} \sim\left[\mathrm{T}_{\mathrm{p}} \omega_{\mathrm{p}}-\left(\Delta \mathrm{p}_{\text {cy }} \mathrm{A}_{\text {cyl }}\right) \mathrm{v}_{\text {cyl }}\right] / \omega_{\mathrm{m}}$

- We can not solve as we don't know $v_{\text {cyl }}$, we find $v_{\text {cyl }}$ via volumetric flow rate

$\checkmark Q_{c y l}=Q_{p}=Q_{m}$ therefore $\omega_{m} D_{m}=\omega_{p} D_{p}=A_{c y l} v_{c y l}$
$\checkmark v_{c y l}=\omega_{p} D_{p} / A_{c y l}$
$\checkmark T_{m} \sim\left[T_{p} \omega_{p}-\left(\Delta p_{c y} A_{c y l}\right) V_{c y l}\right] / \omega_{m} \sim\left[T_{p} \omega_{p}-\left(\Delta p_{c y l} A_{c y}\right)\left(\omega_{p} D_{p} / A_{c y l}\right)\right] / \omega_{m}$
\checkmark The "numerical plug and chug" is left to you, $\mathrm{T}_{\mathrm{m}}=8.91$ in lbf

Example III - Pump, motor, \& cylinder cont.

Given the diagram, solve for $\mathrm{T}_{\mathrm{p}}, \mathrm{T}_{\mathrm{m}}$, and ω_{m}
Note where power crosses into and out of the system boundary

Example III - Pump, motor, \& cylinder cont.

Use a power balance on the pump to determine the pump torque:
$\odot \quad \Sigma \mathrm{P}_{\text {in }}=\Sigma \mathrm{P}_{\text {out }}+\Sigma \mathrm{P}_{\text {loss }}+\Sigma\left(\mathrm{d} \mathrm{E}_{\text {stored }} / \mathrm{dt}\right)$; If $\mathrm{P}_{\text {loss }} \&\left(\mathrm{dE} \mathrm{s}_{\text {stored }} / \mathrm{dt}\right)$ are small compared to $\mathrm{P}_{\text {in }}$:

$$
\Sigma \mathrm{P}_{\text {in }} \quad=\Sigma \mathrm{P}_{\text {out }}
$$

$$
T_{p} \omega_{p}=\Delta p_{p} Q_{p}
$$

$$
T_{p}=\Delta p_{p}\left(Q_{p}\right) / \omega_{p}=\Delta p_{p}\left(D_{p} \omega_{p}\right) / \omega_{p}=\Delta p_{p}\left(D_{p}\right)
$$

$$
(100 \mathrm{psi}-10 \mathrm{psi}) \quad 0.5 \mathrm{in} 3 / \mathrm{rev}(1 / 2 \pi)^{\mathrm{rev} / \mathrm{rad}}=7.16 \mathrm{in} \mathrm{lbf}
$$

\odot The solution to the rest of the problem is the solution to Example II

PROJECT I AND HWK 6

PLANETARY GEAR TRAINS

Planetary relationships (ala Patrick Petri)

Say the arm is grounded....

- Planet gears = idler gears

$$
\frac{\omega_{r i}^{\prime}}{\omega_{s i}^{\prime}}=-\frac{N_{s}}{N_{r}}
$$

Now say the arm spins.... we can say

$$
\begin{aligned}
& \omega_{r i}^{\prime}=\omega_{r i}-\omega_{a} \\
& \omega_{s i}^{\prime}=\omega_{s i}-\omega_{a} \\
& -\frac{N_{s i}}{N_{r i}}=\frac{\omega_{r i}-\omega_{a i}}{\omega_{s i}-\omega_{a i}}
\end{aligned}
$$

Finding the train ratio: Say the ring is grounded, sun = input, arm = output

$$
-\frac{N_{s i}}{N_{r i}}=\frac{0-\omega_{a i}}{\omega_{s i}-\omega_{a i}} \longrightarrow \frac{\omega_{a i}}{\omega_{s i}}=\frac{N_{s}}{N_{R}+N_{s}}
$$

Planetary gear systems: Arm as output

THREADED MECHANISMS

Threaded mechanisms: Geometry

Threaded mechanisms are used in applications such as:

- Bolts
\odot Lead screws (i.e. mills and lathes)
General threaded mechanism geometry

Usually, either the nut or the screw is grounded
Figure above shows the nut grounded

Threaded mechanisms: Modeling power flow

From power balance for our control volume:

$$
\Sigma P_{\text {in }}=\left[\Sigma P_{\text {out }}\right]+\Sigma\left(\frac{d\left(E_{\text {stored }}\right)}{d t}\right) \quad \rightarrow \quad P_{\text {applied }}=\left[P_{\text {exert }}+P_{\text {loss }}\right]+\frac{d\left(E_{\text {stretch }}\right)}{d t}
$$

Power in via work by applied Torque :

$$
\mathrm{P}_{\text {applied }}=\stackrel{\rightharpoonup}{\mathrm{T}}_{\text {applied }}(\stackrel{\rightharpoonup}{\omega}) \cdot \vec{\omega}
$$

Power out via work done by exerted Force :

$$
\mathrm{P}_{\text {exert }}=\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {exert }}(\stackrel{\rightharpoonup}{\mathrm{v}}) \cdot \stackrel{\rightharpoonup}{\mathrm{v}}
$$

Power loss due to friction Torque :

$$
\mathrm{P}_{\text {loss }}=\stackrel{\mathrm{T}}{\text { friction }}(\stackrel{\rightharpoonup}{\omega}) \cdot \vec{\omega}
$$

$$
\text { Rate of energy storage in stretched "cylinder": } \quad \mathrm{P}_{\text {stretch }}=\overrightarrow{\mathrm{F}}_{\text {stretch }}\left(\overrightarrow{\mathrm{v}}_{s}\right) \cdot \overrightarrow{\mathrm{v}}_{s}
$$

From geometry: $\mathrm{v}=\left(\frac{\omega}{2 \pi}\right) l \quad$ Lead $=1$

