

By Noam Angrist

THE GOALS OF SOCIAL SCIENCE

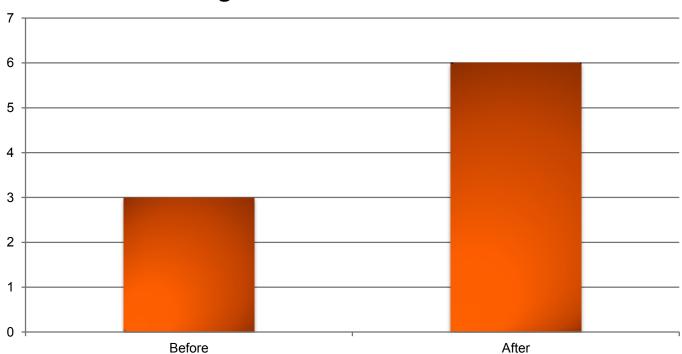
- Explain the world around us. What is really happening and why.
- **Example**: do Kindles boost test scores?

Image courtesy of Dekuwa on Flickr. Available CC BY-NC-SA.

THE GOALS OF SOCIAL SCIENCE

o Did the Kindle intervention work?

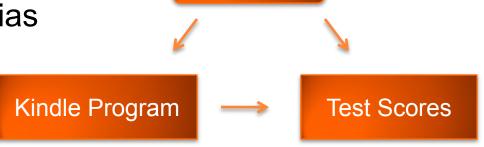
Average for students with Kindles



WHAT'S WRONG WITH THIS?

Some (not all) Key Biases:

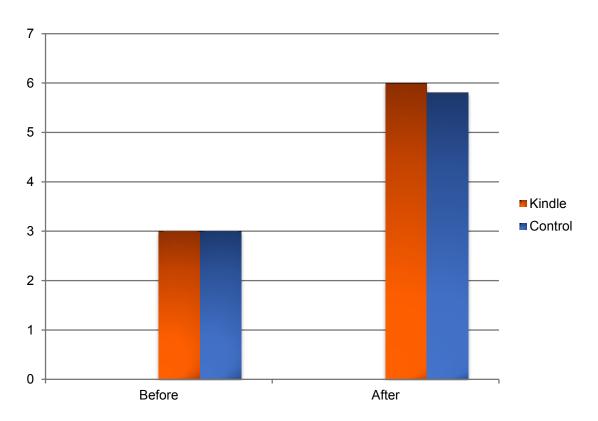
- o (1) Self Selection Bias
- o (2) Omitted Variable Bias
- o (3) Attrition Bias
- (4) Counterfactual



Rich

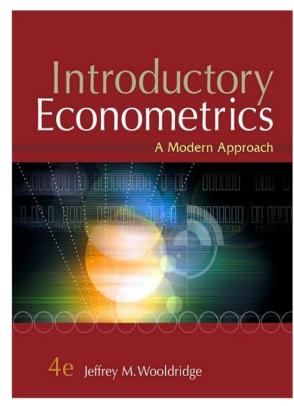
CONVENTIONAL METHODS OF ADDRESSING BIASES

 Add a control group – addresses counterfactual bias



MATHEMATICAL-BASED METHODS OF ADDRESSING BIASES

- Econometrics
 - A) Regressions
 - B) Controlling
 - C) Instrumental variables
 - D) Randomized trials
 - E) Other methods



Woodridge, Jeffrey M. Introductory Econometrics: A Modern Approach. Cengage Learning, 2008. © Cengage Learning. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

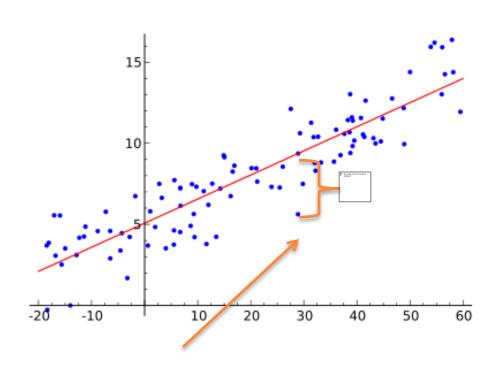
SIMPLE LINEAR REGRESSION: OVERVIEW

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

where

$$\beta = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\alpha = \overline{y} - \beta \overline{x}$$



Slope

Residual

Intercept

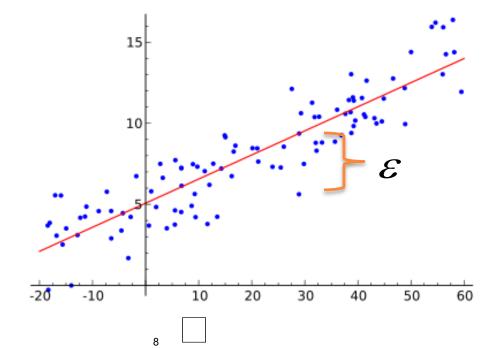
SIMPLE LINEAR REGRESSION: DERIVATION

The goal is to minimize the sum of square residuals in order to find the line of best fit:

$$\min_{\alpha,\beta} Q(\alpha,\beta) \quad \text{where} \quad Q(\alpha,\beta) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y - \alpha - \beta x_i)^2$$

1)
$$\frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - \overline{\alpha} - \beta x_i)^2$$

2)
$$\frac{\partial}{\partial b} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$



SIMPLE LINEAR REGRESSION: DERIVATION

1)
$$\frac{\partial}{\partial a} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

$$= \sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i)(-1) = 0$$

$$= -2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) = 0$$

$$= -\sum_{i=1}^{n} y_i + n\alpha + \beta \sum_{i=1}^{n} x_i = 0$$
This image cannot currently be displayed.

$$=\sum_{i=1}^{n} 2(y_i - \alpha - \beta x_i)(-x_i) = 0$$

$$= -2\sum_{i=1}^{n} (y_i x_i - \alpha x_i - \beta x_i^2) = 0$$

$$= -\sum_{i=1}^{n} x_i y_i + \alpha \sum_{i=1}^{n} x_i^2 = 0$$

$$\alpha = \overline{y} - \beta \overline{x}$$

SIMPLE LINEAR REGRESSION: DERIVATION

• Plug in alpha from equation (1) into equation (2):

1)
$$\alpha = \overline{y} - \beta \overline{x}$$
 2) $= -\sum_{i=1}^{n} x_i y_i + \alpha \sum_{i=1}^{n} x_i^2 = 0$

$$= -\sum_{i=1}^{n} x_{i} y_{i} + (\overline{y} - \beta \overline{x}) \sum_{i=1}^{n} x_{i}^{2} + \beta \sum_{i=1}^{n} x_{i}^{2} = 0$$

This image cannot currently be displayed.

$$\beta = \frac{\sum_{i=1}^{n} x_i y_i - n \overline{yx}}{\sum_{i=1}^{n} x_i^2 - n \overline{x^2}}$$

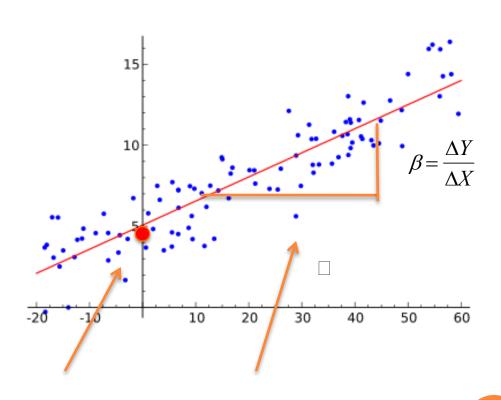


SIMPLE LINEAR REGRESSION

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

$$\beta = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$\alpha = \overline{y} - \beta \overline{x}$$



Intercept

Slope

SIMPLE LINEAR REGRESSION: AN EXAMPLE

 Does a kindle club (as described before) boost test scores?

Let's find out!

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$
 where

 $X_i = participatinginKC$

 $Y_2 = \Delta tests cores$

Dependent Variable

Independent Variable

READING PROGRAM: TEST SCORES

regress diff kc

Source	SS	df	MS
Model Residual	.829634148 75.4243508	1 221	.829634148 .341286655
Total	76.253985	222	.343486419

Number of obs =	223
F(1, 221) =	2.43
Prob > F =	0.1204
R-squared =	0.0109
Adj R-squared =	0.0064
Root MSE =	.5842

Where	

diff is the difference in test score over 8 weeks

and

Kc is a dummy variable that equals 1 id a student participated in the club and 0 if they didn't

diff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kc _cons	.213468 .244532	1369144 .0410026		0.120 0.000	0563569 .1637258	. 4832928

Thus, we have:

$$\beta = .213468$$

$$\alpha = .244532$$

Result:

Participation in the Kindle Club results in an increase of .2134 on standardized test scores relative to all students in the school (everyone else increased around .22 naturally)

ECONOMETRICS: CONTROLLING

I expand the simple linear regression to include more independent (or predictor) variables:

$$Y_{i} = \alpha + \beta_{i,1}X_{i,1} + \beta_{i,2}X_{i,2} + \beta_{i,3}X_{i,3} + \beta_{i,n}X_{i,n} + \varepsilon_{i}$$

Multiple regression allows me to control for certain characteristics (i.e. I can determine relationships holding/given certain variables constant).

This takes into account covariance among variables.

Intuition: conditional probabilities

READING PROGRAM: CONTROLLING

I control for (1) income status and (2) grade level:

regress	diff	kc	maincomestatusOnoneornotdefined1	grade
redress	4111		maincomes cacasononeo ino cae i ineai	y Lau

Source	SS	df	MS	Number of obs = 222
				F(3, 218) = 3.46
Model	3.46703073	3	1.15567691	Prob > F = 0.0171
Residual	72.7171155	218	.33356475	R-squared = 0.0455
				Adj R-squared = 0.0324
Total	76.1841462	221	.344724643	Root MSE = .57755

N= 0540700 1000100 1 07 0 000 0140075 500555	diff	ff Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
maincomestatus~1 .1029078 .0672073 1.53 0.1270295514 .23536 grade1076672 .0475764 -2.26 0.02520143590138988	grade	~1 .1029078 de1076672	.0475764	-2.26	0.025	2014359	.5225552 .235367 0138986 1.578346

Result: our estimate for impact of kindle club participation on test score increase relative to the whole school goes up by .04

Explanation 1: free lunch, harder to improve, so had more kids with free lunch such that when we control, we have a higher impact

Explanation 2: higher grade level, less room for improvement since higher baseline so we had more kids at a higher grade level in group

DID IT WORK!?

- More issues
 - Omitted Variable Bias
 (can't control for everything) factors not included in regression which impact independent and dependent variable
 - Selection Bias
 - Attrition bias

ECONOMETRICS: INSTRUMENTAL VARIABLES

Examples of Z_i

- Birth Date
- Gender
- Twins

Causal Outcome

- Returns of an extra year of schooling
- Title IX affect on labor market outcomes
- Family size effect on schooling

ECONOMETRICS: INSTRUMENTAL VARIABLES

 Using a random variable to "instrument" for causality such that Z has no correlation with Y outcome variable, but is highly correlated with X such that you can attribute a causal impact of X on Y

$$Y_i=lpha+eta X_i+arepsilon_i$$
 Where
$$Cov(Z_{i,}arepsilon_i)=0 ext{ } Cov(Z_{i,}arepsilon_i)>0 ext{ } Y_i=lpha+eta Z_i+arepsilon_i$$

ECONOMETRICS: RANDOMIZED TRIALS

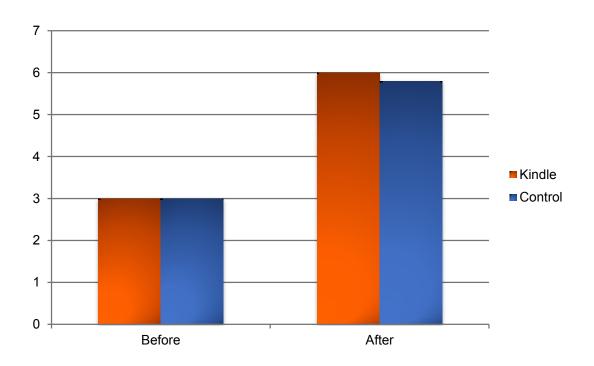
- Program design: randomly assign treatment and control group (like clinical trials in medicine) – eliminates motivation/demographics biases in intervention
- In this case Z_i can act as an instrumental variable since our treatment dummy variable is determined by random lottery

$$Y_i = \alpha + \beta Z_i + \varepsilon_i$$

Now, β has a casual interpretation, not just correlation

Using Random Assignment for IV approach

 Add a random control group – addresses counterfactual bias, omitted variable bias, selfselection



READING PROGRAM: RANDOMIZED TRIAL

I regress the dummy treatment variable X (1 if randomly selected into the KC, 0 if randomly not selected) on the difference in test scores after 8 weeks

. regress diff treated2

Source	SS	df	MS		Number of obs	
Model Residual	1.54468656 74.7092984	1 221	1.54468656 .338051124		Prob > F	= 0.0336 = 0.0203
Total	76.253985	222	.343486419			= .58142
diff	Coef.	Std. I	ßrr. t	P> t	[95% Conf.	Interval]
treated2 _cons	.2685595 .2347739	.12 563 .04 121	352 2.14 159 5.70	0.034	.020963 .1535474	.5161559 .3160003

Result: our estimate for impact of kindle club on test score increase is .26 of a reading level (causal since relative to random control group)

Note 1: this is a rigorous result. Also, notice that the regression with controls yields a result closest to the controlled regression

Note 2: it is critical to check for statistical significance

Note 3: measuring intention to treat effect, so underestimate of impact

Is Category Theory Useful for Social Scientists?

3.1.2 Monoid actions

Definition 3.1.2.1 (Monoid action). Let (M, e, \star) be a monoid and let S be a set. An action of (M, e, \star) on S, or simply an action of M on S or an M-action on S, is a function

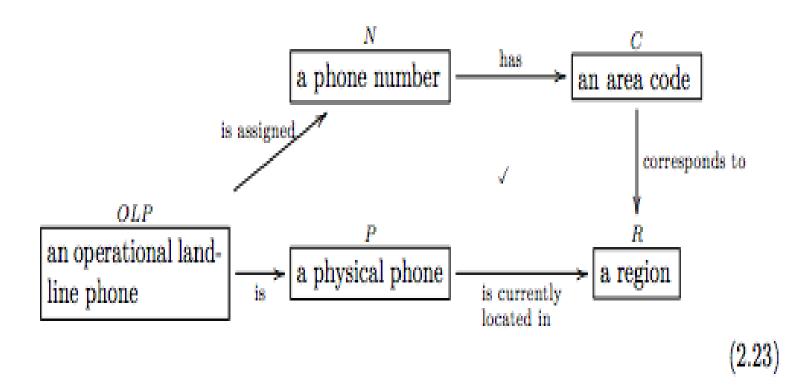
$$G: M \times S \to S$$

such that the following conditions hold for all $m, n \in M$ and all $s \in S$:

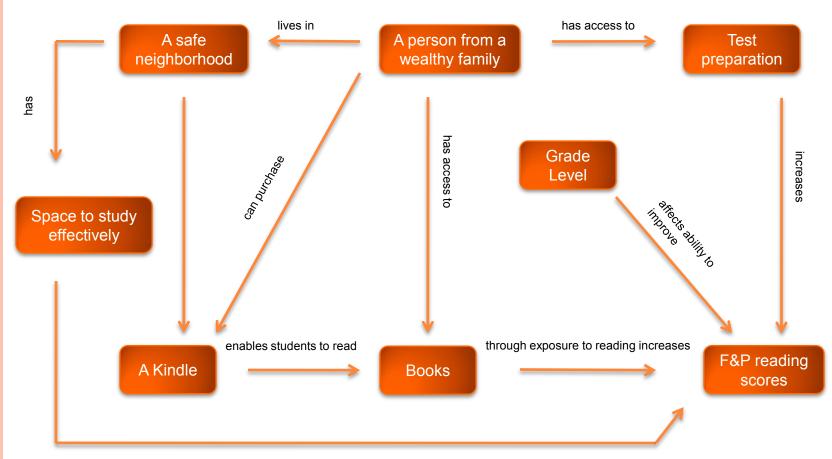
- \bullet $e \subseteq s s$
- m ⊆ (n ⊆ s) − (m * n) ⊆ s.

So where Does Category Theory Come In?

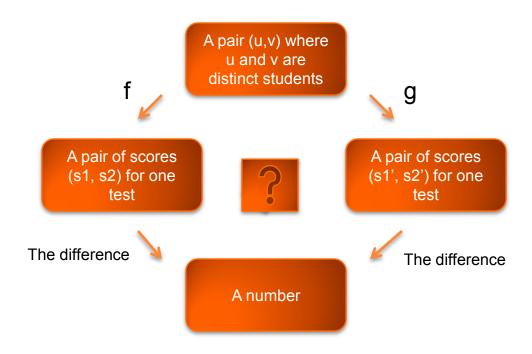
 Defining and determining Omitted Variable Bias through some comprehensive olog



ONE POTENTIAL OLOG: KINDLES AND TEST SCORES...WHICH DOESN'T WORK BUT IS USEFUL NONETHELESS (NOT FUNCTIONS FROM SETS TO SETS)



A REAL OLOG



f: sends v to a bad school without a Kindle; send u to a good school without a Kindle. **g:** send v to a bad school with a Kindle; send u to a good school with a Kindle.

Note: choose a global variable which captures effects from other variables

WHAT CAN I CONCLUDE FROM THIS OLOG?

- Creating an olog helps the social scientist think through the various processes and factors which might affect our outcomes of interest
- There are multiple sources of omitted variable bias
 - The process of creating an olog helps a scientist determine a comprehensive system which can includes as many factors as the social scientist deems relevant
- "A wealthy family" captures many of the omitted variables, seen by the connecting arrows
 - thus controlling for having a wealthy family should yield estimates close to those causal estimated using a randomized controlled trial

READING PROGRAM: CONTROLLING

I control for (1) income status and (2) grade level:

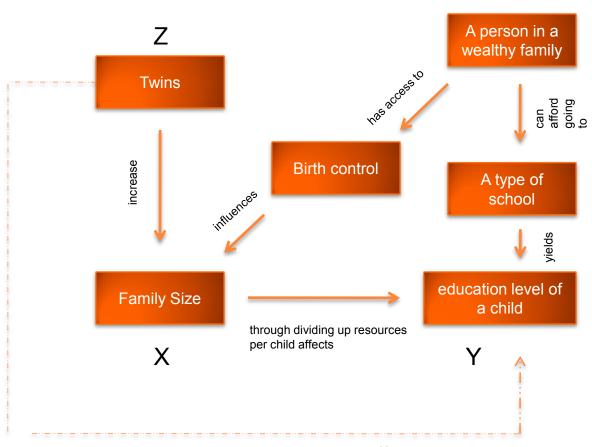
. regress diff kc maincomestatusOnoneornotdefined1 grade

Source	SS	df	MS	Number of obs =
				F(3, 218) =
Model	3.46703073	3	1.15567691	Prob > F =
Residual	72.7171155	218	.33356475	R-squared =
				Adj R-squared =
Total	76.1841462	221	.344724643	Root MSE =

diff	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
kc	.2540788	.1362198	1.87	0.063	0143975	.5225552
maincomestatus~1	.1029078	.0672073	1.53	0.127	0295514	.235367
grade	1076672	.0475764	-2.26	0.025	2014359	0138986
cons	.9019443	.3431936	2.63	0.009	.2255422	1.578346

222 3.46 0.0171 0.0455 0.0324 .57755

INSTRUMENTAL VARIABLES APPLICATION USING OLOGGY-LIKE STUFF (ANOTHER BROKEN BUT USEFUL OLOG)



CONCLUSION

- If we design ologs before our analysis phase we can make sure that:
 - (1) we come up with credible instrumental variables
 - (2) when we control for all relevant variables that might have otherwise been omitted and determine which variables can proxy for others
- This is important because:
 - Randomized trials are expensive and we often resort to controlling as an alternative option to determine causal relationships
 - In the absence of randomized trials, we also need good instruments to determine causal relationships

QUESTIONS/COMMENTS

Image by MIT OpenCourseWare.

MIT OpenCourseWare http://ocw.mit.edu

18.S996 Category Theory for Scientist Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.