
Chapter 3

Databases:
Categories, functors, and universal

constructions

3.1 What is a database?

Integrating data from disparate sources is a major problem in industry today. A

study in 2008 [BH08] showed that data integration accounts for 40% of IT (information

technology) budgets, and that the market for data integration software was $2.5 billion

in 2007 and increasing at a rate of more than 8% per year. In other words, it is a major

problem; but what is it?

A database is a system of interlocking tables. Data becomes information when it is

stored in a given formation. That is, the numbers and letters don’t mean anything until

they are organized, often into a system of interlocking tables. An organized system of

interlocking tables is called a database. Here is a favorite example:

Employee FName WorksIn Mngr
1 Alan 101 2

2 Ruth 101 2

3 Kris 102 3

Department DName Secr
101 Sales 1

102 IT 3

(3.1)

These two tables interlock by use of a special left-hand column, demarcated by

a vertical line; it is called the ID column. The ID column of the first table is called

‘Employee,’ and the ID column of the second table is called ‘Department.’ The entries

in the ID column—e.g. 1, 2, 3 or 101, 102—are like row labels; they indicate a whole

row of the table they’re in. Thus each row label must be unique (no two rows in a table

can have the same label), so that it can unambiguously specify its row.

77

78 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Each table’s ID column, and the set of unique identifiers found therein, is what

allows for the interlocking mentioned above. Indeed, other entries in various tables

can reference rows in a given table by use of its ID column. For example, each entry

in the WorksIn column references a department for each employee; each entry in the

Mngr (manager) column references an employee for each employee, and each entry in

the Secr (secretary) column references an employee for each department. Managing all

this cross-referencing is the purpose of databases.

Looking back at Eq. (3.1), onemight notice that every non-ID column, found in either

table, is a reference to a label of some sort. Some of these, namely WorksIn, Mngr, and

Secr, are internal references, often called foreign keys; they refer to rows (keys) in the

ID column of some (foreign) table. Others, namely FName and DName, are external
references; they refer to strings or integers, which can also be thought of as labels, whose

meaning is known more broadly. Internal reference labels can be changed as long as

the change is consistent—1 could be replaced by 1001 everywhere without changing

the meaning—whereas external reference labels certainly cannot! Changing Ruth to

Bruce everywhere would change how people understood the data.

The reference structure for a given database—i.e. how tables interlock via foreign

keys—tells us something about what information was intended to be stored in it. One

may visualize the reference structure for Eq. (3.1) graphically as follows:

easySchema B

Employee

•
Department

•

string

◦

WorksIn

FName

Mngr

Secr

DName

(3.2)

This is a kind of “Hasse diagram for a database,” much like the Hasse diagrams for

preorders in Remark 1.39. How should you read it?

The two tables from Eq. (3.1) are represented in the graph (3.2) by the two black

nodes, which are given the same name as the ID columns: Employee and Department.

There is another node—drawn white rather than black—which represents the external

reference type of strings, like “Alan,” “Alpha,” and “Sales". The arrows in the diagram

representnon-IDcolumnsof the tables; theypoint in thedirectionof reference: WorksIn

refers an employee to a department.

Exercise 3.3. Count the number of non-ID columns in Eq. (3.1). Count the number of

arrows (foreign keys) in Eq. (3.2). They should be the same number in this case; is this

a coincidence? ♦

A Hasse-style diagram like the one in Eq. (3.2) can be called a database schema; it
represents how the information is being organized, the formation in which the data is

kept. One may add rules, sometimes called ‘business rules’ to the schema, in order to

ensure the integrity of the data. If these rules are violated, one knows that data being

3.1. WHAT IS A DATABASE? 79

entered does not conform to the way the database designers intended. For example,

the designers may enforce rules saying

• every department’s secretary must work in that department;

• every employee’s manager must work in the same department as the employee.

Doing so changes the schema, say from ‘easySchema’ (3.2) to ‘mySchema’ below.

mySchema B

Employee

•
Department

•

string

◦

WorksIn

FName

Mngr

Secr

DName

Department.Secr.WorksIn = Department

Employee.Mngr.WorksIn = Employee.WorksIn

(3.4)

In other words, the difference is that easySchema plus constraints equals mySchema.

We will soon see that database schemas are categories C, that the data itself is given

by a ‘set-valued’ functor C→ Set, and that databases can be mapped to each other via

functors C → D. In other words, there is a relatively large overlap between database

theory and category theory. This has been worked out in a number of papers; see

Section 3.6. It has also been implemented in working software, called FQL, which

stands for functorial query language. Here is example FQL code for the schema shown

above:

schema mySchema = {

nodes

Employee, Department;

attributes

DName : Department -> string,

FName : Employee -> string;

arrows

Mngr : Employee -> Employee,

WorksIn : Employee -> Department,

Secr : Department -> Employee;

equations

Department.Secr.WorksIn = Department,

Employee.Mngr.WorksIn = Employee.WorksIn;

}

Communication between databases. We have said that databases are designed to

store information about something. But different people or organizations might view

the same sort of thing in different ways. For example, one bank stores its financial

records according to European standards and another does so according to Japanese

standards. If these two banks merge into one, they will need to be able to share their

data despite differences in the shape of their database schemas.

80 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Such problems are huge and intricate in general, because databases often comprise

hundreds or thousands of interlocking tables. Moreover, these problems occur more

frequently than just when companies want to merge. It is quite common that a given

company moves data between databases on a daily basis. The reason is that different

ways of organizing information are convenient for different purposes. Just likewe pack

our clothes in a suitcase when traveling but use a closet at home, there is generally not

one best way to organize anything.

Category theory provides a mathematical approach for translating between these

different organizational forms. That is, it formalizes a sort of automated reorganizing

process called data migration, which takes data that fits snugly in one schema andmoves

it into another.

Here is a simple case. Imagine an airline company has two different databases,

perhaps created at different times, that hold roughly the same data.

$◦

Economy

• First Class•

string

◦

Price

Position

Price

Position

A B

$◦

Airline Seat•

string

◦

Price

Position

�: B

(3.5)

Schema A has more detail than schema B—an airline seat may be in first class or

economy—but they are roughly the same. We will see that they can be connected by a

functor, and that data conforming to A can be migrated through this functor to schema

B and vice versa.

The statistics at the beginning of this section show that this sort of problem—

when occurring at enterprise scale—continues to prove difficult and expensive. If one

attempts to move data from a source schema to a target schema, the migrated data

could fail to fit into the target schema or fail to satisfy some of its constraints. This

happens surprisingly often in theworld of business: a nightmay be spentmoving data,

and the next morning it is found to have arrived broken and unsuitable for further use.

In fact, it is believed that over half of database migration projects fail.

In this chapter, we will discuss a category-theoretic method for migrating data.

Using categories and functors, one can prove up front that a given data migration will

not fail, i.e. that the result is guaranteed to fit into the target schema and satisfy all its

constraints.

The material in this chapter gets to the heart of category theory: in particular, we

discuss categories, functors, natural transformations, adjunctions, limits, and colimits.

In fact, many of these ideas have been present in the discussion above:

• The schema pictures, e.g. Eq. (3.4) depict categories C.

3.2. CATEGORIES 81

• The instances, e.g. Eq. (3.1) are functors from C to a certain category called Set.
• The implicit mapping in Eq. (3.5), which takes economy and first class seats in A

to airline seats in B, constitutes a functor A→ B.
• The notion of data migration for moving data between schemas is formalized by

adjoint functors.

We begin in Section 3.2 with the definition of categories and a bunch of different

sorts of examples. In Section 3.3 we bring back databases, in particular their instances

and the maps between them, by discussing functors and natural transformations. In

Section 3.4 we discuss data migration by way of adjunctions, which generalize the

Galois connections we introduced in Section 1.4. Finally in Section 3.5 we give a bonus

section on limits and colimits.1

3.2 Categories

A category C consists of four pieces of data—objects, morphisms, identities, and a

composition rule—satisfying two properties.

Definition 3.6. To specify a category C:
(i) one specifies a collection

2
Ob(C), elements of which are called objects.

(ii) for every two objects c , d, one specifies a set C(c , d),3 elements of which are called

morphisms from c to d.
(iii) for every object c ∈ Ob(C), one specifies a morphism idc ∈ C(c , c), called the

identity morphism on c.
(iv) for every three objects c , d , e ∈ Ob(C) and morphisms f ∈ C(c , d) and 1 ∈ C(d , e),

one specifies a morphism f # 1 ∈ C(c , e), called the composite of f and 1.
Wewill sometimeswrite an object c ∈ C, instead of c ∈ Ob(C). It will also be convenient

to denote elements f ∈ C(c , d) as f : c → d. Here, c is called the domain of f , and d is

called the codomain of f .
These constituents are required to satisfy two conditions:

(a) unitality: for any morphism f : c → d, composing with the identities at c or d
does nothing: idc # f � f and f # idd � f .

(b) associativity: for any three morphisms f : c0 → c1, 1 : c1 → c2, and h : c2 → c3,

the following are equal: (f # 1) # h � f # (1 # h). We write this composite simply

as f # 1 # h.

1
By “bonus,” we mean that although not strictly essential to the understanding of this particular

chapter, limits and colimits will show up throughout the book and throughout one’s interaction with

category theory, and we think the reader will especially benefit from this material in the long run.

2
Here, a collection can be thought of as a bunch of things, just like a set, but that may be too large to

formally be a set. An example is the collection of all sets, which would run afoul of Russell’s paradox if it

were itself a set.

3
This set C(c , d) is often denoted HomC(c , d), and called the “hom-set from c to d.” The word “hom”

stands for homomorphism, of which the word “morphism” is a shortened version.

82 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Our next goal is to give lots of examples of categories. Our first source of examples

is that of free and finitely-presented categories, which generalize the notion of Hasse

diagram from Remark 1.39.

3.2.1 Free categories

Recall from Definition 1.36 that a graph consists of two types of thing: vertices and

arrows. From there one can define paths, which are just head-to-tail sequences of

arrows. Every path p has a start vertex and an end vertex; if p goes from v to w, we

write p : v → w. To every vertex v, there is a trivial path, containing no arrows, starting

and ending at v; we often denote it by idv or simply by v. We may also concatenate

paths: given p : v → w and q : w → x, their concatenation is denoted p # q, and it goes

v → x.

In Chapter 1, we used graphs to depict preorders (V, ≤): the vertices form the

elements of the preorder, and we say that v ≤ w if there is a path from v to w in G. We

will now use graphs in a very similar way to depict certain categories, known as free
categories. Thenwewill explain a strong relationship between preorders and categories

in Section 3.2.3.

Definition 3.7. For any graph G � (V,A, s , t), we can define a category Free(G), called
the free category on G, whose objects are the vertices V and whose morphisms from c to
d are the paths from c to d. The identity morphism on an object c is simply the trivial

path at c. Composition is given by concatenation of paths.

For example, we define 2 to be the free category generated by the graph shown

below:

2 B Free
(

v1• v2•f1

)
(3.8)

It has two objects v1 and v2, and three morphisms: idv1
: v1 → v1, f1 : v1 → v2, and

idv2
: v2 → v2. Here idv1

is the path of length 0 starting and ending at v1, f1 is the path

of length 1 consisting of just the arrow f1, and idv2
is the length 0 path at v2. As our

notation suggests, idv1
is the identity morphism for the object v1, and similarly idv2

for v2. As composition is given by concatenation, we have, for example idv1

f1 � f1,

idv2

idv2
� idv2

, and so on.

From now on, we may elide the difference between a graph and the corresponding

free category Free(G), at least when the one we mean is clear enough from context.

Exercise 3.9. For Free(G) to really be a category, we must check that this data we

specified obeys the unitality and associativity properties. Check that these are obeyed

for any graph G. ♦

3.2. CATEGORIES 83

Exercise 3.10. The free category on the graph shown here:4

3 B Free
(

v1• v2• v3•f1 f2

)
(3.11)

has three objects and six morphisms: the three vertices and six paths in the graph.

Create six names, one for each of the six morphisms in 3. Write down a six-by-six

table, label the rows and columns by the six names you chose.

1. Fill out the table by writing the name of the composite in each cell, when there is

a composite.

2. Where are the identities? ♦

Exercise 3.12. Let’s make some definitions, based on the pattern above:

1. What is the category 1? That is, what are its objects and morphisms?

2. What is the category 0?
3. What is the formula for the number of morphisms in n for arbitrary n ∈ N? ♦

Example 3.13 (Natural numbers as a free category). Consider the following graph:

•
z

s

(3.14)

It has only one vertex and one arrow, but it has infinitely many paths. Indeed, it

has a unique path of length n for every natural number n ∈ N. That is, Path �

{z , s , (s # s), (s # s # s), . . .}, where we write z for the length 0 path on z; it represents
the morphism idz . There is a one-to-one correspondence between Path and the natural

numbers, N � {0, 1, 2, 3, . . .}.
This is an example of a categorywith one object. A categorywith one object is called

a monoid, a notion we first discussed in Example 2.6. There we said that a monoid is

a tuple (M, ∗, e) where ∗ : M × M → M is a function and e ∈ M is an element, and

m ∗ 1 � m � 1 ∗ m and (m ∗ n) ∗ p � m ∗ (n ∗ p).
The two notions may superficially look different, but it is easy to describe the

connection. Given a category C with one object, say •, let M B C(•, •), let e � id•, and

let ∗ : C(•, •) × C(•, •) → C(•, •) be the composition operation ∗ � #. The associativity

and unitality requirements for the monoid will be satisfied because C is a category.

Exercise 3.15. In Example 3.13 we identified the paths of the loop graph (3.14) with

numbers n ∈ N. Paths can be concatenated. Given numbers m , n ∈ N, what number

corresponds to the concatenation of their associated paths? ♦

4
Asmentioned above, we elide the difference between the graph and the corresponding free category.

84 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

3.2.2 Presenting categories via path equations

So for any graph G, there is a free category on G. But we don’t have to stop there: we

can add equations between paths in the graph, and still get a category. We are only

allowed to equate two paths p and q when they are parallel, meaning they have the

same source vertex and the same target vertex.

A finite graphwith path equations is called a finite presentation for a category, and the

category that results is known as a finitely-presented category. Here are two examples:

Free_square B

A• B•

•
C

•
D

f

1 h

i

no equations

Comm_square B

A• B•

•
C

•
D

f

1 h

i

f # h � 1 # i

Bothof these are presentations of categories: in the left-handone, there are no equations

so it presents a free category, as discussed in Section 3.2.1. The free square category

has ten morphisms, because every path is a unique morphism.

Exercise 3.16.
1. Write down the ten paths in the free square category above.

2. Name two different paths that are parallel.

3. Name two different paths that are not parallel. ♦

On the other hand, the category presented on the right has only nine morphisms,

because f #h and 1 # i aremade equal. This category is called the “commutative square.”

Its morphisms are

{A, B, C,D , f , 1 , h , i , f # h}

One might say “the missing one is 1 # i,” but that is not quite right: 1 # i is there too,

because it is equal to f # h. As usual, A denotes idA, etc.

Exercise 3.17. Write down all themorphisms in the category presented by the following

diagram:

A• B•

•
C

•
D

f

1 j h

i

f # h � j � 1 # i

♦

Example 3.18. We should also be aware that enforcing an equation between two mor-

phisms often implies additional equations. Here are two more examples of presenta-

3.2. CATEGORIES 85

tions, in which this phenomenon occurs:

C B •
z

s

s # s � z

D B •
z

s

s # s # s # s � s # s

In C we have the equation s # s � z. But this implies s # s # s � z # s � s! And similarly

we have s # s # s # s � z # z � z. The set of morphisms in C is in fact merely {z , s}, with

composition described by s # s � z # z � z, and z # s � s # z � s. In group theory, one

would speak of a group called Z/2Z.

Exercise 3.19. Write down all the morphisms in the category D from Example 3.18.

♦

Remark 3.20. We can now see that the schemas in Section 3.1, e.g. Eqs. (3.2) and (3.4)

are finite presentations of categories. We will come back to this idea in Section 3.3.

3.2.3 Preorders and free categories: two ends of a spectrum

Now that we have used graphs to depict preorders in Chapter 1 and categories above,

one may want to know the relationship between these two uses. The main idea we

want to explain now is that

“A preorder is a category where every two parallel arrows are the same.”

Thus any preorder can be regarded as a category, and any category can be somehow

“crushed down” into a preorder. Let’s discuss these ideas.

Preorders as categories. Suppose (P, ≤) is a preorder. It specifies a category P as

follows. The objects of P are precisely the elements of P; that is, Ob(P) � P. As for

morphisms, P has exactly one morphism p → q if p ≤ q and no morphisms p → q if

p � q. The fact that ≤ is reflexive ensures that every object has an identity, and the fact

that ≤ is transitive ensures that morphisms can be composed. We call P the category
corresponding to the preorder (P, ≤).

In fact, aHasse diagram for a preorder can be thought of a presentation of a category

where, for all vertices p and q, every two paths from p → q are declared equal. For

example, in Eq. (1.5) we saw a Hasse diagram that was like the graph on the left:

•

• • •

•

•

• • •

•

d
e

f

a b c

no equations?

•

• • •

•

d
e

f

a b c

a # d � b # e � c # f

86 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

The Hasse diagram (left) might look the most like the free category presentation (mid-

dle) which has no equations, but that is not correct. The free category has three

morphisms (paths) from bottom object to top object, whereas preorders are categories

with at most one morphism between two given objects. Instead, the diagram on the

right, with these paths from bottom to top made equal, is the correct presentation for

the preorder on the left.

Exercise 3.21. What equations would you need to add to the graphs below in order to

present the associated preorders?

G1 � • •
f

1
G2 �

•

f

G3 �

• •

• •

f

1 h

i

G4 �

• •

• •

f

1 h ♦

Thepreorder reflectionof a category. Given any categoryC, one canobtain apreorder

(C, ≤) from it by destroying the distinction between any two parallel morphisms. That

is, let C B Ob(C), and put c1 ≤ c2 iff C(c1 , c2) , �. If there is one, or two, or fifty,

or infinitely many morphisms c1 → c2 in C, the preorder reflection does not see the

difference. But it does see the difference between somemorphisms and nomorphisms.

Exercise 3.22. What is the preorder reflection of the category N from Example 3.13?

♦

Wehaveonlydiscussed adjoint functors betweenpreorders, but soonwewill discuss

adjoints in general. Here is a statement you might not understand exactly, but it’s true;

you can ask a category theory expert about it and they should be able to explain it to

you:

Considering a preorder as a category is right adjoint to turning a category

into a preorder by preorder reflection.

Remark 3.23 (Ends of a spectrum). The main point of this subsection is that both

preorders and free categories are specified by a graphwithout path equations, but they

denote opposite ends of a spectrum. In both cases, the vertices of the graph become

the objects of a category and the paths become morphisms. But in the case of free

categories, there are no equations so each path becomes a different morphism. In

the case of preorders, all parallel paths become the same morphism. Every category

presentation, i.e. graph with some equations, lies somewhere in between the free

category (no equations) and its preorder reflection (all possible equations).

3.2.4 Important categories in mathematics

We have been talking about category presentations, but there are categories that are

best understood directly, not by way of presentations. Recall the definition of category

3.2. CATEGORIES 87

from Definition 3.6. The most important category in mathematics is the category of

sets.

Definition 3.24. The category of sets, denoted Set, is defined as follows.

(i) Ob(Set) is the collection of all sets.

(ii) If S and T are sets, then Set(S, T) � { f : S→ T | f is a function}.
(iii) For each set S, the identity morphism is the function idS : S → S given by

idS(s) B s for each s ∈ S.
(iv) Given f : S → T and 1 : T → U, their composite is the function f # 1 : S → U

given by (f # 1)(s) B 1(f (s)).
These definitions satisfy the unitality and associativity conditions, so Set is indeed a

category.

Closely related is the category FinSet. This is the category whose objects are finite

sets and whose morphisms are functions between them.

Exercise 3.25. Let 2 � {1, 2} and 3 � {1, 2, 3}. These are objects in the category Set
discussed in Definition 3.24. Write down all the elements of the set Set(2, 3); there
should be nine. ♦

Remark 3.26. You may have wondered what categories have to do with V-categories

(Definition 2.46); perhaps you think the definitions hardly look alike. Despite the term

‘enriched category’, V-categories are not categories with extra structure. While some

sorts of V-categories, such as Bool-categories, i.e. preorders, can naturally be seen as

categories, other sorts, such as Cost-categories, cannot.
The reason for the importance of Set is that, if we generalize the definition of

enriched category (Definition 2.46), we find that categories in the sense of Definition 3.6

are exactly Set-categories—so categories are V-categories for a very special choice of V.

We’ll come back to this in Section 4.4.4. For now, we simply remark that just like a deep

understanding of the categoryCost—for example, knowing that it is a quantale—yields

insight into Lawvere metric spaces, so the study of Set yields insights into categories.

There are many other categories that mathematicians care about:

• Top: the category of topological spaces (neighborhood)

• Grph: the category of graphs (connection)

• Meas: the category of measure spaces (amount)

• Mon: the category of monoids (action)

• Grp: the category of groups (reversible action, symmetry)

• Cat: the category of categories (action in context, structure)

But in fact, this does not at all do justice to the diversity of categories mathematicians

think about. Theyworkwithwhatever category they find fits their purpose at the time,

like ‘the category of connected Riemannian manifolds of dimension at most 4’.

Here is one more source of examples: take any category you already have and

reverse all its morphisms; the result is again a category.

88 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Example 3.27. Let C be a category. Its opposite, denoted Cop
, is the category with

the same objects, Ob(Cop) B Ob(C), and for any two objects c , d ∈ Ob(C), one has

Cop(c , d) B C(d , c). Identities and composition are as in C.

3.2.5 Isomorphisms in a category

The previous sections have all been about examples of categories: free categories,

presented categories, and important categories in math. In this section, we briefly

switch gears and talk about an important concept in category theory, namely the

concept of isomorphism.

In a category, there is often the idea that two objects are interchangeable. For

example, in the category Set, one can exchange the set {�,�} for the set {0, 1} and
everything will be the same, other than the names for the elements. Similarly, if one

has a preorder with elements a , b, such that a ≤ b and b ≤ a, i.e. a � b, then a and b are

essentially the same. How so? Well they act the same, in that for any other object c, we

know that c ≤ a iff c ≤ b, and c ≥ a iff c ≥ b. The notion of isomorphism formalizes

this notion of interchangeability.

Definition 3.28. An isomorphism is a morphism f : A → B such that there exists a

morphism 1 : B→ A satisfying f # 1 � idA and 1 # f � idB. In this case we call f and 1

inverses, and we often write 1 � f −1
, or equivalently f � 1−1

. We also say that A and B
are isomorphic objects.

Example 3.29. The set A B {a , b , c} and the set 3 � {1, 2, 3} are isomorphic; that is,

there exists an isomorphism f : A → 3 given by f (a) � 2, f (b) � 1, f (c) � 3. The

isomorphisms in the category Set are the bĳections.

Recall that the cardinality of a finite set is the number of elements in it. This can be

understood in terms of isomorphisms in FinSet. Namely, for any finite set A ∈ FinSet,
its cardinality is the number n ∈ N such that there exists an isomorphism A � n. Georg

Cantor defined the cardinality of any set X to be its isomorphism class, meaning the

equivalence class consisting of all sets that are isomorphic to X.

Exercise 3.30.
1. What is the inverse f −1

: 3→ A of the function f given in Example 3.29?

2. How many distinct isomorphisms are there A→ 3? ♦

Exercise 3.31. Show that in any given category C, for any given object c ∈ C, the identity
idc is an isomorphism. ♦

Exercise 3.32. Recall Examples 3.13 and 3.18. A monoid in which every morphism is

an isomorphism is known as a group.
1. Is the monoid in Example 3.13 a group?

3.3. FUNCTORS, NATURAL TRANSFORMATIONS, AND DATABASES 89

2. What about the monoid C in Example 3.18? ♦

Exercise 3.33. Let G be a graph, and let Free(G) be the corresponding free category.

Somebody tells you that the only isomorphisms in Free(G) are the identity morphisms.

Is that person correct? Why or why not? ♦

Example 3.34. In this example, wewill see that it is possible for 1 and f to be almost—but

not quite—inverses, in a certain sense.

Consider the functions f : 2→ 3 and 1 : 3→ 2 drawn below:

•1

•2

•1

•2

•3

•1

•2

•3

•1

•2

Then the reader should be able to instantly check that f # 1 � id2 but 1 # f , id3. Thus f
and 1 are not inverses and hence not isomorphisms. We won’t need this terminology,

but category theorists would say that f and 1 form a retraction.

3.3 Functors, natural transformations, and databases

In Section 3.1we showed some database schemas: graphswith path equations. Then in

Section 3.2.2 we said that graphs with path equations correspond to finitely-presented

categories. Now we want to explain what the data in a database is, as a way to

introduce functors. To do so, we begin by noticing that sets and functions—the objects

andmorphisms in the category Set—can be captured by particularly simple databases.

3.3.1 Sets and functions as databases

The first observation is that any set can be understood as a table with only one column:

the ID column.

Planet of Sol
Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Prime number
2

3

5

7

11

13

17

...

Flying pig

90 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Rather than put the elements of the set between braces, e.g. {2, 3, 5, 7, 11, . . .}, we write

them down as rows in a table.

Indatabases, single-column tables are often called controlledvocabularies, ormaster

data. Now to be honest, we can only write out every single entry in a table when its

set of rows is finite. A database practitioner might find the idea of our prime number

table a bit unrealistic. But we’re mathematicians, so since the idea makes perfect sense

abstractly, we will continue to think of sets as one-column tables.

The above databases have schemas consisting of just one vertex:

Planet of Sol• Prime number•
Flying pig

•

Obviously, there’s really not much difference between these schemas, other than the

label of the unique vertex. So we could say “sets are databases whose schema consists

of a single vertex.” Let’s move on to functions.

A function f : A→ B can almost be depicted as a two-column table

Beatle Played
George Lead guitar

John Rhythm guitar

Paul Bass guitar

Ringo Drums

except it is unclear whether the elements of the right-hand column exhaust all of B.
What if there are rock-and-roll instruments out there that none of the Beatles played?

So a function f : A→ B requires two tables, one for A and its f column, and one for B:

Beatle Played
George Lead guitar

John Rhythm guitar

Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums

Keyboard

Lead guitar

Rhythm guitar

Thus the database schema for any function is just a labeled version of 2:

Beatle•
Rock-and-roll

instrument•Played

The lesson is that an instance of a database takes a presentation of a category, and turns

every vertex into a set, and every arrow into a function. As such, it describes a map

from the presented category to the category Set. In Section 2.4.2 we saw that maps of

V-categories are known as V-functors. Similarly, we call maps of plain old categories,

functors.

3.3. FUNCTORS, NATURAL TRANSFORMATIONS, AND DATABASES 91

3.3.2 Functors

A functor is a mapping between categories. It sends objects to objects and morphisms

to morphisms, all while preserving identities and composition. Here is the formal

definition.

Definition 3.35. Let C and D be categories. To specify a functor from C to D, denoted

F : C→ D,

(i) for every object c ∈ Ob(C), one specifies an object F(c) ∈ Ob(D);
(ii) for every morphism f : c1 → c2 in C, one specifies a morphism F(f) : F(c1) →

F(c2) in D.

The above constituents must satisfy two properties:

(a) for every object c ∈ Ob(C), we have F(idc) � idF(c).

(b) for every three objects c1 , c2 , c3 ∈ Ob(C) and two morphisms f ∈ C(c1 , c2), 1 ∈
C(c2 , c3), the equation F(f # 1) � F(f) # F(1) holds in D.

Example 3.36. For example, here we draw three functors F : 2→ 3:

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

m0•

•
m1

f1

n0•

n1•

n2•

11

12

In each case, the dotted arrows show what the functor F does to the vertices in 2; once
that information is specified, it turns out—in this special case—that what F does to

the three paths in 2 is completely determined. In the left-hand diagram, F sends every

path to the trivial path, i.e. the identity on n0. In the middle diagram F(m0) � n0,

F(f1) � 11, and F(m1) � n1. In the right-hand diagram, F(m0) � n0, F(m1) � n2, and

F(f1) � 11
12.

Exercise 3.37. Above we wrote down three functors 2 → 3. Find and write down all

the remaining functors 2→ 3. ♦

Example 3.38. Recall the categories presented by Free_square and Comm_square in

Section 3.2.2. Here they are again, with
′
added to the labels in Free_square to help

92 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

distinguish them:

Free_square B

A′• B′•

•
C′

•
D′

f ′

1′ h′

i′

no equations

Comm_square B

A• B•

•
C

•
D

f

1 h

i

f # h � 1 # i

There are lots of functors from the free square category (let’s call itF) to the commutative

square category (let’s call it C).

However, there is exactly one functor F : F→ C that sends A′ to A, B′ to B, C′ to C,

and D′ to D. That is, once we have made this decision about how F acts on objects,

each of the ten paths in F is forced to go to a certain path in C: the one with the right

source and target.

Exercise 3.39. Say where each of the ten morphisms in F is sent under the functor F
from Example 3.38. ♦

All of our example functors so far have been completely determined by what they

do on objects, but this is usually not the case.

Exercise 3.40. Consider the free categories C � • → • and D � •⇒ • . Give two

functors F,G : C→ D that act the same on objects but differently on morphisms. ♦

Example 3.41. There are also lots of functors from the commutative square category C

to the free square category F, but none that sends A to A′, B to B′, C to C′, and D to D′.
The reason is that if F were such a functor, then since f # h � 1 # i in C, we would have

F(f # h) � F(1 # i), but then the rules of functors would let us reason as follows:

f ′ # h′ � F(f) # F(h) � F(f # h) � F(1 # i) � F(1) # F(i) � 1′ # i′

The resulting equation, f ′ # h′ � 1′ # i′ does not hold in F because it is a free category

(there are “no equations”): every two paths are considered different morphisms. Thus

our proposed F is not a functor.

Example 3.42 (Functors between preorders are monotone maps). Recall from Sec-

tion 3.2.3 that preorders are categories with at most one morphism between any two

objects. A functor between preorders is exactly a monotone map.

For example, consider the preorder (N, ≤) considered as a category N with objects

Ob(N) � N and a unique morphism m → n iff m ≤ n. A functor F : N → N sends

each object n ∈ N to an object F(n) ∈ N. It must send morphisms in N to morphisms

in N. This means if there is a morphism m → n then there had better be a morphism

F(m) → F(n). In other words, if m ≤ n, then we had better have F(m) ≤ F(n). But as

3.3. FUNCTORS, NATURAL TRANSFORMATIONS, AND DATABASES 93

long as m ≤ n implies F(m) ≤ F(n), we have a functor.

Thus a functor F : N→ N and a monotone map N→ N are the same thing.

Exercise 3.43 (The category of categories). Back in the primordial ooze, there is a

category Cat in which the objects are themselves categories. Your task here is to construct

this category.

1. Given any category C, show that there exists a functor idC : C→ C, known as the

identity functor on C, that maps each object to itself and each morphism to itself.

Note that a functor C → D consists of a function from Ob(C) to Ob(D) and for each

pair of objects c1 , c2 ∈ C a function from C(c1 , c2) to D(F(c1), F(c2)).
2. Show that given F : C → D and G : D → E, we can define a new functor (F #

G) : C→ E just by composing functions.

3. Show that there is a category, call it Cat, where the objects are categories, mor-

phisms are functors, and identities and composition are given as above. ♦

3.3.3 Database instances as Set-valued functors

Let C be a category, and recall the category Set from Definition 3.24. A functor F : C→
Set is known as a set-valued functor on C. Much of database theory (not how to make

them fast, but what they are and what you do with them) can be cast in this light.

Indeed, we already saw in Remark 3.20 that any database schema can be regarded as

(presenting) a category C. The next thing to notice is that the data itself—any instance

of the database—is given by a set-valued functor I : C → Set. The only additional

detail is that for any white node, such as c �
string

◦ , we want to force I to map to the set

of strings. We suppress this detail in the following definition.

Definition 3.44. Let C be a schema, i.e. a finitely-presented category. A C-instance is a
functor I : C→ Set.5

Exercise 3.45. Let 1denote the categorywith oneobject, called 1, one identitymorphism

id1, and no other morphisms. For any functor F : 1 → Set one can extract a set F(1).
Show that for any set S, there is a functor FS : 1→ Set such that FS(1) � S. ♦

The above exercise reaffirms that the set of planets, the set of prime numbers, and

the set of flying pigs are all set-valued functors—instances—on the schema 1. Similarly,

set-valued functors on the category 2 are functions. All our examples so far are for the

situation where the schema is a free category (no equations). Let’s try an example of a

category that is not free.

5
Warning: a C-instance is a state of the database “at an instant in time.” The term “instance” should

not be confused with its usage in object oriented programming, which would correspond more to what

we call a row r ∈ I(c).

94 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Example 3.46. Consider the following category:

C B •
z

s

s # s � s

(3.47)

What is a set-valued functor F : C→ Set? It will consist of a set Z B F(z) and a function

S B F(s) : Z→ Z, subject to the requirement that S # S � S. Here are some examples

• Z is the set of US citizens, and S sends each citizen to her or his president. The

president’s president is her- or him-self.

• Z � N is the set of natural numbers and S sends each number to 0. In particular,

0 goes to itself.

• Z is the set of all well-formed arithmetic expressions, such as 13+(2∗4) or−5, that

one canwrite using integers and the symbols+,−, ∗, (,). The function S evaluates

the expression to return an integer, which is itself a well-formed expression. The

evaluation of an integer is itself.

• Z � N≥2, and S sends n to its smallest prime factor. The smallest prime factor of

a prime is itself.

N≥2 smallest prime factor
2 2

3 3

4 2

...
...

49 7

50 2

51 3

...
...

Exercise 3.48. Above, we thought of the sort of data that would make sense for the

schema (3.47). Give an example of the sort of data that would make sense for the

following schemas: 1.
•
z

s

s # s � z

2.

a• b• c•f 1

h

f # 1 � f # h

♦

The main idea is this: a database schema is a category, and an instance on that

schema—the data itself—is a set-valued functor. All the constraints, or business rules,

are ensured by the rules of functors, namely that functors preserve composition.6

6
One can put more complex constraints, called embedded dependencies, on a database; these correspond

category theoretically to what are called “lifting problems” in category theory. See [Spi14b] for more on

this.

3.3. FUNCTORS, NATURAL TRANSFORMATIONS, AND DATABASES 95

3.3.4 Natural transformations

If C is a schema—i.e. a finitely-presented category—then there are many database

instances on it, which we can organize into a category. But this is part of a larger story,

namely that of natural transformations. An abstract picture to have in mind is this:

C D.

F

G

α

Definition 3.49. Let C andD be categories, and let F,G : C→ D be functors. To specify

a natural transformation α : F⇒ G,

(i) for each object c ∈ C, one specifies a morphism αc : F(c) → G(c) in D, called the

c-component of α.
These components must satisfy the following, called the naturality condition:
(a) for every morphism f : c → d in C, the following equation must hold:

F(f) # αd � αc # G(f).

Anatural transformation α : F→ G is called a natural isomorphism if each component

αc is an isomorphism in D.

The naturality condition can also be written as a so-called commutative diagram. A

diagram in a category is drawn as a graph whose vertices and arrows are labeled by

objects and morphisms in the category. For example, here is a diagram that’s relevant

to the naturality condition in Definition 3.49:

F(c) G(c)

F(d) G(d)

αc

F(f) G(f)

αd

(3.50)

Definition 3.51. A diagram D in C is a functor D : J → C from any category J, called

the indexing category of the diagram D. We say that D commutes if D(f) � D(f ′) holds
for every parallel pair of morphisms f , f ′ : a → b in J.7

In terms of Eq. (3.50), the only case of two parallel morphisms is that of F(c)⇒ G(d),
so to say that the diagram commutes is to say that F(f) # αd � αc # G(f). This is exactly
the naturality condition from Definition 3.49.

7
We could package this formally by saying that D commutes iff it factors through the preorder

reflection of J.

96 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Example 3.52. A representative picture is as follows:

1• 2•
f

C B u•

v• w•

x•
y
•

z•

a

b

d

c

e

1

h

k

�: D

F

G

We have depicted, in blue and red respectively, two functors F,G : C → D. A natural

transformation α : F⇒ G is given by choosing components α1 : v → x and α2 : w → y.
We have highlighted the only choice for each in green; namely, α1 � c and α2 � 1.

The key point is that the functors F and G are ways of viewing the category C as

lying inside the category D. The natural transformation α, then, is a way of relating

these two views using the morphisms in D. Does this help you to see and appreciate

the notation C D?

F

G

α⇓

Example 3.53. We said in Exercise 3.45 that a functor 1 → Set can be identified with

a set. So suppose A and B are sets considered as functors A, B : 1 → Set. A natural

transformation between these functors is just a function between the sets.

Definition 3.54. LetC andDbe categories. Wedenote byDC
the categorywhose objects

are functors F : C→ D andwhose morphismsDC(F,G) are the natural transformations

α : F→ G. This categoryDC
is called the functor category, or the category of functors from

C to D.

Exercise 3.55. Let’s look more deeply at how DC
is a category.

1. Figure out how to compose natural transformations. (Hint: an expert tells you

“for each object c ∈ C, compose the c-components.”)

2. Propose an identity natural transformation on any object F ∈ DC
, and check that

it is unital (i.e. that it obeys condition (a) of Definition 3.6). ♦

Example 3.56. In our new language, Example 3.53 says that Set1
is equivalent to Set.

Example 3.57. Let N denote the category associated to the preorder (N, ≤), and recall

from Example 3.42 that we can identify a functor F : N → N with a non-decreasing

sequence (F0 , F1 , F2 , . . .) of natural numbers, i.e. F0 ≤ F1 ≤ F2 ≤ · · · . If G is another

functor, considered as anon-decreasing sequence, thenwhat is a natural transformation

3.3. FUNCTORS, NATURAL TRANSFORMATIONS, AND DATABASES 97

α : F→ G?

Since there is at most one morphism between two objects in a preorder, each com-

ponent αn : Fn → Gn has no data, it just tells us a fact: that Fn ≤ Gn . And the naturality

condition is vacuous: every square in a preorder commutes. So a natural transforma-

tion between F and G exists iff Fn ≤ Gn for each n, and any two natural transformations

F ⇒ G are the same. In other words, the category NN
is itself a preorder; namely the

preorder of monotone maps N→ N.

Exercise 3.58. Let C be an arbitrary category and let P be a preorder, thought of as a

category. Consider the following statements:

1. For any two functors F,G : C → P, there is at most one natural transformation

F→ G.

2. For any two functors F,G : P → C, there is at most one natural transformation

F→ G.

For each, if it is true, say why; if it is false, give a counterexample. ♦

Remark 3.59. Recall that inRemark 2.71we said the categoryof preorders is equivalent to

the category of Bool-categories. We can now state the precisemeaning of this sentence.

First, there exists a category PrO in which the objects are preorders and themorphisms

are monotone maps. Second, there exists a category Bool-Cat in which the objects are

Bool-categories and the morphisms are Bool-functors. We call these two categories

equivalent because there exist functors F : PrO → Bool-Cat and G : Bool-Cat → PrO
such that there exist natural isomorphisms F # G � idPrO and G # F � idBool-Cat in the

sense of Definition 3.49.

3.3.5 The category of instances on a schema

Definition 3.60. Suppose that C is a database schema and I , J : C → Set are database

instances. An instance homomorphism between them is a natural transformation α : I →
J. Write C-Inst B SetC to denote the functor category as defined in Definition 3.54.

We saw in Example 3.53 that 1-Inst is equivalent to the category Set. In this

subsection, we will show that there is a schema whose instances are graphs and whose

instance homomorphisms are graph homomorphisms.

Extended example: the category of graphs as a functor category. You may find

yourself back in the primordial ooze (first discussed in Section 2.3.2), because while

previously we have been using graphs to present categories, now we obtain graphs

themselves as database instances on a specific schema (which is itself a graph):

Gr B
Arrow• Vertex•

source

target

no equations

98 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Here’s an example Gr-instance, i.e. set-valued functor I : Gr→ Set, in table form:

Arrow source target
a 1 2

b 1 3

c 1 3

d 2 2

e 2 3

Vertex
1

2

3

4

(3.61)

Here I(Arrow) � {a , b , c , d , e}, and I(Vertex) � {1, 2, 3, 4}. One can draw the instance

I as a graph:

I �

1• 2•

3• 4•

a

b

c
e

d

Every row in the Vertex table is drawn as a vertex, and every row in the Arrow table

is drawn as an arrow, connecting its specified source and target. Every possible graph

can be written as a database instance on the schema Gr, and every possible Gr-instance
can be represented as a graph.

Exercise 3.62. In Eq. (3.2), a graph is shown (forget the distinction between white and

black nodes). Write down the corresponding Gr-instance, as in Eq. (3.61). (Do not be

concerned that you are in the primordial ooze.) ♦

Thus the objects in the category Gr-Inst are graphs. The morphisms in Gr-Inst
are called graph homomorphisms. Let’s unwind this. Suppose that G,H : Gr → Set
are functors (i.e. Gr-instances); that is, they are objects G,H ∈ Gr-Inst. A morphism

G→ H is a natural transformation α : G→ H between them; what does that entail?

By Definition 3.49, since Gr has two objects, α consists of two components,

αVertex : G(Vertex) → H(Vertex) and αArrow : G(Arrow) → H(Arrow),

both of which are morphisms in Set. In other words, α consists of a function from

vertices of G to vertices of H and a function from arrows of G to arrows of H. For these

functions to constitute a graph homomorphism, they must “respect source and target”

in the precise sense that the naturality condition, Eq. (3.50) holds. That is, for every

morphism in Gr, namely source and target, the following diagrams must commute:

G(Arrow) H(Arrow)

G(Vertex) H(Vertex)

αArrow

G(source) H(source)

αVertex

G(Arrow) H(Arrow)

G(Vertex) H(Vertex)

αArrow

G(target) H(target)

αVertex

Thesemay look complicated, but they say exactlywhatwewant. Wewant the functions

αVertex and αArrow to respect source and targets in G and H. The left diagram says “start

3.4. ADJUNCTIONS AND DATA MIGRATION 99

with an arrow in G. You can either apply α to the arrow and then take its source in H,

or you can take its source in G and then apply α to that vertex; either way you get the

same answer.” The right-hand diagram says the same thing about targets.

Example 3.63. Consider the graphs G and H shown below

G B 1• 2• 3•a b H B
4• 5•

c

d
e

Here they are, written as database instances—i.e. set-valued functors—on Gr:

G B

Arrow source target
a 1 2

b 2 3

Vertex
1

2

3

H B

Arrow source target
c 4 5

d 4 5

e 5 5

Vertex
4

5

The top row is G and the bottom row is H. They are offset so you can more easily

complete the following exercise.

Exercise 3.64. We claim that—with G,H as in Example 3.63—there is exactly one

graph homomorphism α : G→ H such that αArrow(a) � d.

1. What is the other value of αArrow, and what are the three values of αVertex?

2. In your own copy of the tables of Example 3.63, draw αArrow as two lines connect-

ing the cells in the ID column of G(Arrow) to those in the ID column of H(Arrow).
Similarly, draw αVertex as connecting lines.

3. Check the source column and target column and make sure that the matches are

natural, i.e. that “alpha-then-source equals source-then-alpha” and similarly for

“target.” ♦

3.4 Adjunctions and data migration

Wehave talked about how set-valued functors on a schema can be understood as filling

that schema with data. But there are also functors between schemas. When the two

sorts of functors are composed, data is migrated. This is the simplest form of data

migration; more complex ways to migrate data come from using adjoints. All of the

above is the subject of this section.

100 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

3.4.1 Pulling back data along a functor

To begin, we will migrate data between the graph-indexing schema Gr and the loop

schema, which we call DDS, shown below

Gr B
Arrow• Vertex•

source

target

no equations

DDS B

State•

next

no equations

We begin by writing down a sample instance I : DDS→ Set on this schema:

State next
1 4

2 4

3 5

4 5

5 5

6 7

7 6

(3.65)

We call the schema DDS to stand for discrete dynamical system. Indeed, wemay think

of the data in the DDS-instance of Eq. (3.65) as listing the states and movements of a

deterministic machine: at every point in time the machine is in one of the listed states,

and given the machine in one of the states, in the next instant it moves to a uniquely

determined next state.

Our goal is to migrate the data in Eq. (3.65) to data on Gr; this will give us the data

of a graph and so allow us to visualise our machine.

We will use a functor connecting these schemas in order to move data between

them. The reader can create any functor she likes, but we will use a specific functor

F : Gr→ DDS to migrate data in a way that makes sense to us, the authors. Here we

draw F, using colors to hopefully aid understanding:

Arrow•

Vertex•

source target

Gr

State•

next

DDS

F

The functor F sends both objects of Gr to the ‘State’ object of DDS (as it must). On

morphisms, it sends the ‘source’ morphism to the identity morphism on ‘State’, and

the ‘target’ morphism to the morphism ‘next’.

3.4. ADJUNCTIONS AND DATA MIGRATION 101

A sample database instance on DDS was given in Eq. (3.65); recall this is a functor

I : DDS→ Set. So now we have two functors as follows:

Gr DDS Set.F I
(3.66)

Objects in Gr are sent by F to objects in DDS, which are sent by I to objects in Set,
which are sets. Morphisms in Gr are sent by F to morphisms in DDS, which are

sent by I to morphisms in Set, which are functions. This defines a composite functor

F # I : Gr→ Set. Both F and I respect identities and composition, so F # I does too. Thus
we have obtained an instance on Gr, i.e. we have converted our discrete dynamical

system from Eq. (3.65) into a graph! What graph is it?

For an instance on Gr, we need to fill an Arrow table and a Vertex table. Both

of these are sent by F to State, so let’s fill both with the rows of State in Eq. (3.65).

Similarly, since F sends ‘source’ to the identity and sends ‘target’ to ‘next’, we obtain

the following tables:

Arrow source target
1 1 4

2 2 4

3 3 5

4 4 5

5 5 5

6 6 7

7 7 6

Vertex
1

2

3

4

5

6

7

Now that we have a graph, we can draw it.

1• 2•
3• 4• 6• 7•

•
5

1 2

3 4

6

7

5

Each arrow is labeled by its source vertex, as if to say, “What I do next is determined

by what I am now.”

Exercise 3.67. Consider the functor G : Gr→ DDS given by sending ‘source’ to ‘next’

and sending ‘target’ to the identity on ‘State’. Migrate the same data, called I in

Eq. (3.65), using the functor G. Write down the tables and draw the corresponding

graph. ♦

Werefer to the above procedure—basically just composing functors as in Eq. (3.66)—

as “pulling back data along a functor.” We just now pulled back data I along functor

F.

102 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Definition 3.68. Let C and D be categories and let F : C → D be a functor. For any

set-valued functor I : D→ Set, we refer to the composite functor F # I : C→ Set as the
pullback of I along F.

Givenanatural transformation α : I ⇒ J, there is anatural transformation αF : F#I ⇒
F # J, whose component (F # I)(c) → (F # J)(c) for any c ∈ Ob(C) is given by (αF)c B αFc .

C D SetF
I

J

α { C Set
F#I

F#J

αF

This uses the data of F to define a functor ∆F : D-Inst→ C-Inst.

Note that the term pullback is also used for a certain sort of limit, for more details

see Remark 3.100.

3.4.2 Adjunctions

In Section 1.4 we discussed Galois connections, which are adjunctions between pre-

orders. Now that we’ve defined categories and functors, we can discuss adjunctions

in general. The relevance to databases is that the data migration functor ∆ from Defi-

nition 3.68 always has two adjoints of its own: a left adjoint which we denote Σ and a

right adjoint which we denote Π.

Recall that an adjunction between preorders P and Q is a pair of monotone maps

f : P → Q and 1 : Q → P that are almost inverses: we have

f (p) ≤ q if and only if p ≤ 1(q). (3.69)

Recall from Section 3.2.3 that in a preorder P, a hom-set P(a , b) has one element when

a ≤ b, and no elements otherwise. We can thus rephrase Eq. (3.69) as an isomorphism

of sets Q(f (p), q) � P(p , 1(q)): either both are one-element sets or both are 0-element

sets. This suggests how to define adjunctions in the general case.

Definition 3.70. Let C and D be categories, and L : C→ D and R : D→ C be functors.

We say that L is left adjoint to R (and that R is right adjoint to L) if, for any c ∈ C and

d ∈ D, there is an isomorphism of hom-sets

αc ,d : C(c , R(d)) �−→ D(L(c), d)

that is natural in c and d.8

Given a morphism f : c → R(d) in C, its image 1 B αc ,d(f) is called its mate.
Similarly, the mate of 1 : L(c) → d is f .

3.4. ADJUNCTIONS AND DATA MIGRATION 103

To denote an adjunction we write L a R, or in diagrams,

C D
L

R

with the⇒ in the direction of the left adjoint.

Example 3.71. Recall that every preorder P can be regarded as a category. Galois

connections between preorders and adjunctions between the corresponding categories

are exactly the same thing.

Example 3.72. Let B ∈ Ob(Set) be any set. There is an adjunction called ‘currying B,’
after the logician Haskell Curry:

Set Set
−×B

(−)B
Set(A × B, C) � Set(A, CB)

Abstractly we write it as on the left, but what this means is that for any sets A, C, there

is a natural isomorphism as on the right.

To explain this, we need to talk about exponential objects in Set. Suppose that B
and C are sets. Then the set of functions B → C is also a set; let’s denote it CB

. It’s

written this way because if C has 10 elements and B has 3 elements then CB
has 10

3

elements, and more generally for any two finite sets |CB | � |C | |B |.
The idea of currying is that given sets A, B, and C, there is a one-to-one correspon-

dence between functions (A × B) → C and functions A → CB
. Intuitively, if I have a

function f of two variables a , b, I can “put off” entering the second variable: if you give

me just a, I’ll return a function B→ C that’s waiting for the B input. This is the curried

version of f . As one might guess, there is a formal connection between exponential

objects and what we called hom-elements b (c in Definition 2.79.

Exercise 3.73. In Example 3.72, we discussed an adjunction between functors − × B
and (−)B. But we only said how these functors worked on objects: for an arbitrary set

X, they return sets X × B and XB
respectively.

8
This naturality is between functors Cop × D → Set. It says that for any morphisms f : c′ → c in C

and 1 : d → d′ in D, the following diagram commutes:

C(c , Rd) D(Lc , d)

C(c′, Rd′) D(Lc′, d′)

C(f ,R1)

αc ,d

D(L f ,1)

αc′ ,d′

104 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

1. Given a morphism f : X → Y, what morphism should − × B : X × B → Y × B
return?

2. Given a morphism f : X → Y, what morphism should (−)B : XB → YB
return?

3. Consider the function + : N × N → N, which sends (a , b) 7→ a + b. Currying +,

we get a certain function p : N→ NN. What is p(3)? ♦

Example 3.74. If you know some abstract algebra or topology, here are some other

examples of adjunctions.

1. Free constructions: given any set you get a free group, free monoid, free ring, free

vector space, etc.; each of these is a left adjoint. The corresponding right adjoint

takes a group, a monoid, a ring, a vector space etc. and forgets the algebraic

structure to return the underlying set.

2. Similarly, given a graph you get a free preorder or a free category, as we discussed

in Section 3.2.3; each is a left adjoint. The corresponding right adjoint is the

underlying graph of a preorder or of a category.

3. Discrete things: given any set you get a discrete preorder, discrete graph, discrete

metric space, discrete category, discrete topological space; each of these is a left

adjoint. The corresponding right adjoint is again underlying set.

4. Codiscrete things: given any set you get a codiscrete preorder, complete graph,

codiscrete category, codiscrete topological space; each of these is a right adjoint.

The corresponding left adjoint is the underlying set.

5. Given a group, you can quotient by its commutator subgroup to get an abelian

group; this is a left adjoint. The right adjoint is the inclusion of abelian groups

into groups.

3.4.3 Left and right pushforward functors, Σ and Π

Given F : C → D, the data migration functor ∆F turns D-instances into C-instances.

This functor has both a left and a right adjoint:

C-Inst D-Inst

ΣF

ΠF

∆F

3.4. ADJUNCTIONS AND DATA MIGRATION 105

Using the names Σ and Π in this context is fairly standard in category theory. In the

case of databases, they have the following helpful mnemonic:

Migration Functor Pronounced Reminiscent of Database idea
∆ Delta Duplicate

or destroy

Duplicate or destroy

tables or columns

Σ Sigma Sum Union (sum up) data

Π Pi Product Pair9 and query data

Just likeweused∆F to pull back anydiscrete dynamical systemalong F : Gr→ DDS
and get a graph, the migration functors ΣF and ΠF can be used to turn any graph into

a discrete dynamical system. That is, given an instance J : Gr → Set, we can get

instances ΣF(J) and ΠF(J) on DDS. This, however, is quite technical, and we leave it

to the adventurous reader to compute an example, with help perhaps from [Spi14a],

which explores the definitions of Σ and Π in detail. A less technical shortcut is simply

to code up the computation in the open-source FQL software.

To get the basic idea across without getting mired in technical details, here we shall

instead discuss a very simple example. Recall the schemas from Eq. (3.5). We can set

up a functor between them, the one sending black dots to black dots and white dots to

white dots:

$◦

Economy

• First Class•

string

◦

Price

Position

Price

Position

A B

$◦

Airline Seat•

string

◦

Price

Position

�: B
F

With this functor F in hand, we can transform any B-instance into an A-instance using

∆F. Whereas ∆ was interesting in the case of turning discrete dynamical systems into

graphs in Section 3.4.1, it is not very interesting in this case. Indeed, it will just copy—∆

for duplicate—the rows in Airline seat into both Economy and First Class.

∆F has two adjoints, ΣF and ΠF, both of which transform any A-instance I into a

B-instance. The functor ΣF does what one would most expect from reading the names

on each object: it will put into Airline Seat the union of Economy and First Class:

ΣF(I)(Airline Seat) � I(Economy) t I(First Class).

The functor ΠF puts into Airline Seat the set of those pairs (e , f) where e is an

Economy seat, f is a First Class seat, and e and f have the same price and position.

9
This is more commonly called “join” by database programmers.

106 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

In this particular example, one imagines that there should be no such seats in a valid

instance I, in which caseΠF(I)(Airline Seat)would be empty. But in other uses of these

same schemas, ΠF can be a useful operation. For example, in the schema A replace

the label ‘Economy’ by ‘Rewards Program’, and in B replace ‘Airline Seat’ by ‘First

Class Seats’. Then the operation ΠF finds those first class seats that are also rewards

program seats. This operation is a kind of database query; querying is the operation

that databases are built for.

The moral is that complex data migrations can be specified by constructing functors

F between schemas and using the “induced” functors ∆F, ΣF, and ΠF. Indeed, in

practice essentially all usefulmigrations can be built up from these. Hence the language

of categories provides a framework for specifying and reasoning about datamigrations.

3.4.4 Single set summaries of databases

To give a stronger idea of the flavor of Σ and Π, we consider another special case,

namely where the target category D is equal to 1; see Exercise 3.12. In this case, there

is exactly one functor C→ 1 for any C; let’s denote it

! : C→ 1. (3.75)

Exercise 3.76. Describe the functor ! : C→ 1 from Eq. (3.75). Where does it send each

object? What about each morphism? ♦

Wewant to consider thedatamigration functorsΣ! : C-Inst→ 1-Inst andΠ! : C-Inst→
1-Inst. In Example 3.53, we saw that an instance on 1 is the same thing as a set. So let’s

identify 1-Inst with Set, and hence discuss

Σ! : C-Inst→ Set and Π! : C-Inst→ Set.

Given any schema C and instance I : C→ Set, we will get setsΣ!(I) andΠ!(I). Thinking
of these sets as database instances, each corresponds to a single one-column table—a

controlled vocabulary—summarizing an entire database instance on the schema C.

Consider the following schema

G B

Email• Address•
sent_by

received_by

no equations

(3.77)

Here’s a sample instance I : G→ Set:

Email sent_by received_by
Em_1 Bob Grace

Em_2 Grace Pat

Em_3 Bob Emmy

Em_4 Sue Doug

Em_5 Doug Sue

Em_6 Bob Bob

Address
Bob

Doug

Emmy

Grace

Pat

Sue

3.5. BONUS: AN INTRODUCTION TO LIMITS AND COLIMITS 107

Exercise 3.78. Note thatG fromEq. (3.77) is isomorphic to the schemaGr. In Section3.3.5
we saw that instances on Gr are graphs. Draw the above instance I as a graph. ♦

Nowwehave a unique functor ! : G→ 1, andwewant to saywhatΣ!(I) andΠ!(I) give
us as single-set summaries. First,Σ!(I) tells us all the emailing groups—the “connected

components”—in I:
1

Bob-Grace-Pat-Emmy

Sue-Doug

This form of summary, involving identifying entries into common groups, or quotients,

is typical of Σ-operations.

The functor Π!(I) lists the emails from I which were sent from a person to her- or

him-self.

1
Em_6

This is again a sort of query, selecting the entries that fit the criterion of self-to-self

emails. Again, this is typical of Π-operations.

Where do these facts—thatΠ! and Σ! act the way we said—come from? Everything

follows from the definition of adjoint functors (3.70): indeed we hope this, together

with the examples given in Example 3.74, give the reader some idea of how general

and useful adjunctions are, both in mathematics and in database theory.

Onemore point: whilewewill not spell out the details, we note that these operations

are also examples of constructions known as colimits and limits in Set. We end this

chapter with bonusmaterial, exploring these key category theoretic constructions. The

reader should keep in mind that, in general and not just for functors to 1, Σ-operations
are built from colimits in Set, and Π-operations are built from limits in Set.

3.5 Bonus: An introduction to limits and colimits

What do products of sets, the results ofΠ!-operations on database instances, andmeets

in a preorder all have in common? The answer, as we shall see, is that they are all

examples of limits. Similarly, disjoint unions of sets, the results of Σ!-operations on

database instances, and joins in a preorder are all colimits. Let’s begin with limits.

Recall that Π! takes a database instance I : C → Set and turns it into a set Π!(I).
More generally, a limit turns a functor F : C→ D into an object of D.

3.5.1 Terminal objects and products

Terminal objects and products are each a sort of limit. Let’s discuss them in turn.

Terminal objects. The most basic limit is a terminal object.

108 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Definition 3.79. Let C be a category. Then an object Z in C is a terminal object if, for
each object C of C, there exists a unique morphism ! : C→ Z.

Since this unique morphism exists for all objects in C, we say that terminal objects

have a universal property.

Example 3.80. In Set, any set with exactly one element is a terminal object. Why?

Consider some such set {•}. Then for any other set C we need to check that there is

exactly one function ! : C → {•}. This unique function is the one that does the only

thing that can be done: it maps each element c ∈ C to the element • ∈ {•}.

Exercise 3.81. Let (P, ≤) be a preorder, let z ∈ P be an element, and let P be the

corresponding category (see Section 3.2.3). Show that z is a terminal object in P if and

only if it is a top element in P: that is, if and only if for all c ∈ P we have c ≤ z. ♦

Exercise 3.82. Name a terminal object in the category Cat. (Hint: recall Exercise 3.76.)

♦

Exercise 3.83. Not every category has a terminal object. Find one that doesn’t. ♦

Proposition 3.84. All terminal objects in a category C are isomorphic.

Proof. This is a simple, but powerful standard argument. Suppose Z and Z′ are both

terminal objects in some category C. Then there exist (unique) maps a : Z → Z′ and
b : Z′→ Z. Composing these, we get a map a # b : Z→ Z. Now since Z is terminal, this

map Z → Z must be unique. But idZ is also such a map. So we must have a # b � idZ.

Similarly, we find that b # a � idZ′. Thus a is an isomorphism, with inverse b. �

Remark 3.85 (“The limit” vs. “a limit”). Not only are all terminal objects isomorphic,

there is a unique isomorphism between any two. We hence say “terminal objects are

unique up to unique isomorphism.” To a category theorist, this is very nearly the same

thing as saying “all terminal objects are equal.” Thus we often abuse terminology and

talk of ‘the’ terminal object, rather than “a” terminal object. Wewill do the same for any

sort of limit or colimit, e.g. speak of “the product” of two sets, rather than “a product.”

We saw a similar phenomenon in Definition 1.81.

Products. Products are slightly more complicated to formalize than terminal objects,

but they are familiar in practice.

Definition 3.86. Let C be a category, and let X,Y be objects in C. A product of X and Y is

an object, denoted X×Y, together withmorphisms pX : X×Y → X and pY : X×Y → Y
such that for all objects C together with morphisms f : C → X and 1 : C → Y, there

exists a unique morphism C→ X×Y, denoted 〈 f , 1〉, for which the following diagram

3.5. BONUS: AN INTRODUCTION TO LIMITS AND COLIMITS 109

commutes:

C

X Y

X × Y

f 1

〈 f ,1〉

pX pY

We will try to bring this down to earth in Example 3.87. Before we do, note that

X × Y is an object equipped with morphisms to X and Y. Roughly speaking, it is like

“the best object-equipped-with-morphisms-to-X-and-Y” in all of C, in the sense that

any other object-equipped-with-morphisms-to-X-and-Y maps to it uniquely. This is

called a universal property. It’s customary to use a dotted line to indicate the unique

morphism that exists because of some universal property.

Example 3.87. In Set, a product of two sets X and Y is their usual cartesian product

X × Y B {(x , y) | x ∈ X, y ∈ Y},

which comes with two projections pX : X × Y → X and pY : X × Y → Y, given by

pX(x , y) B x and pY(x , y) B y.
Given any set C with functions f : C → X and 1 : C → Y, the unique map from C

to X × Y such that the required diagram commutes is given by 〈 f , 1〉(c) B (f (c), 1(c)).
Here is a picture of the product 6 × 4 of sets 6 and 4.

(1,1)
•1•

(1,2)
•2•

(1,3)
•3•

(1,4)
•4•

1•

(2,1)
•

(2,2)
•

(2,3)
•

(2,4)
•

2•

(3,1)
•

(3,2)
•

(3,3)
•

(3,4)
•

3•

(4,1)
•

(4,2)
•

(4,3)
•

(4,4)
•

4•

(5,1)
•

(5,2)
•

(5,3)
•

(5,4)
•

5•

(6,1)
•

(6,2)
•

(6,3)
•

(6,4)
•

6•

C

∀ f

∀1

∃!

Exercise 3.88. Let (P, ≤) be a preorder, let x , y ∈ P be elements, and let P be the

corresponding category. Show that the product x × y in P agrees with their meet x ∧ y
in P. ♦

110 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Example 3.89. Given two categories C and D, their product C × D may be given as

follows. The objects of this category are pairs (c , d), where c is an object of C and d is an

object of D. Similarly, morphisms (c , d) → (c′, d′) are pairs (f , 1) where f : c → c′ is a
morphism inC and 1 : d → d′ is amorphism inD. Composition ofmorphisms is simply

given by composing each entry in the pair separately, so (f , 1) # (f ′, 1′) � (f # f ′, 1 # 1′).

Exercise 3.90.
1. What are the identity morphisms in a product category C ×D?

2. Why is composition in a product category associative?

3. What is the product category 1 × 2?
4. What is the product category P×Qwhen P and Q are preorders and P and Q are

the corresponding categories? ♦

These two constructions, terminal objects and products, are subsumed by the notion

of limit.

3.5.2 Limits

We’ll get a little abstract. Consider the definition of product. This says that given any

pair of maps X
f
←− C

1

−→ Y, there exists a unique map C → X × Y such that certain

diagrams commute. This has the flavor of being terminal—there is a unique map to

X × Y—but it seems a bit more complicated. How are the two ideas related?

It turns out that products are terminal objects, but of a different category, which

we’ll call Cone(X,Y), the category of cones over X and Y in C. We will see in Exercise 3.91

that X
pX←−− X × Y

pY−−→ Y is a terminal object in Cone(X,Y).
An object of Cone(X,Y) is simply a pair of maps X

f
←− C

1

−→ Y. A morphism from

X
f
←− C

1

−→ Y to X
f ′
←− C′

1′

−→ Y in Cone(X,Y) is a morphism a : C → C′ in C such that

the following diagram commutes:

C

X Y

C′

f 1

a

f ′ 1′

Exercise 3.91. Check that a product X
pX←−− X×Y

pY−−→ Y is exactly the same as a terminal

object in Cone(X,Y). ♦

We’re now ready for the abstract definition. Don’t worry if the details are unclear;

the main point is that it is possible to unify terminal objects, maximal elements, and

meets, products of sets, preorders, and categories, and many other familiar friends

under the scope of a single definition. In fact, they’re all just terminal objects in

different categories.

3.5. BONUS: AN INTRODUCTION TO LIMITS AND COLIMITS 111

Recall from Definition 3.51 that formally speaking, a diagram in C is just a functor

D : J→ C. Here J is called the indexing category of the diagram D.

Definition 3.92. Let D : J→ C be a diagram. A cone (C, c∗) over D consists of

(i) an object C ∈ C;
(ii) for each object j ∈ J, a morphism c j : C→ D(j).

To be a cone, these must satisfy the following property:

(a) for each f : j → k in J, we have ck � c j # D(f).
A morphism of cones (C, c∗) → (C′, c′∗) is a morphism a : C→ C′ in C such that for all

j ∈ Jwe have c j � a # c′j . Cones over D, and their morphisms, form a category Cone(D).
The limit of D, denoted lim(D), is the terminal object in the category Cone(D). Say

it is the cone lim(D) � (C, c∗); we refer to C as the limit object and the map c j for any

j ∈ J as the jth projection map.

For visualization purposes, if J is the free category on the graph

1 3

2 4 5

with five objects and five non-identity morphisms, then we may draw a diagram

D : J→ C inside C as on the left below, and a cone on it as on the right:

C

D1 D3

D2 D4 D5

C

D1 D3

D2 D4 D5

c1

c2

c3 c4

c5

Here, any two parallel paths that start at C are considered the same. Note that both

these diagrams depict a collection of objects and morphisms inside the category C.

Example 3.93. Terminal objects are limits where the indexing category is empty, J � �.

Example 3.94. Products are limits where the indexing category consists of two objects

v ,w and no arrows, J �
v• w• .

3.5.3 Finite limits in Set

Recall that this discussion was inspired by wanting to understand Π-operations, and

in particular Π!. We can now see that a database instance I : C → Set is a diagram in

112 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

Set. The functorΠ! takes the limit of this diagram. In this subsectionwe give a formula

describing the result. This captures all finite limits in Set.
In database theory, we work with categories C that are presented by a finite graph

plus equations. We won’t explain the details, but it’s in fact enough just to work with

the graph part: as far as limits are concerned, the equations in C don’t matter. For

consistency with the rest of this section, let’s denote the database schema by J instead

of C.

Theorem3.95. Let Jbe a categorypresentedby thefinite graph (V,A, s , t) togetherwith

some equations, and let D : J → Set be a set-valued functor. Write V � {v1 , . . . , vn}.
The set

lim

J
D B

{
(d1 , . . . , dn) | di ∈ D(vi) for all 1 ≤ i ≤ n and

for all a : vi → v j ∈ A, we have D(a)(di) � d j
}
.

together with the projection maps pi : (limJ D) → D(vi) given by pi(d1 , . . . , dn) B di ,

is a limit of D.

Example 3.96. If J is the empty graph • , then n � 0: there are no vertices. There is ex-

actly one empty tuple (), which vacuously satisfies the properties, sowe’ve constructed

the limit as the singleton set {()} consisting of just the empty tuple. Thus the limit of

the empty diagram, i.e. the terminal object in Set is the singleton set. See Remark 3.85.

Exercise 3.97. Show that the limit formula in Theorem 3.95 works for products. See

Example 3.94. ♦

Exercise 3.98. If D : 1 → Set is a functor, what is the limit of D? Compute it using

Theorem 3.95, and check your answer against Definition 3.92. ♦

Pullbacks. In particular, the condition that the limit of D : J → Set selects tuples

(d1 , . . . , dn) such that D(a)(di) � d j for each morphism a : i → j in J allows us to use

limits to select data that satisfies certain equations or constraints. This is what allows

us to express queries in terms of limits. Here is an example.

Example 3.99. If J is presented by the cospan graph

x•
f
−−→ a•

1

←−−
y
• , then its limit is

known as a pullback. Given the diagram X
f
−→ A

1

←− Y, the pullback is the cone shown

3.5. BONUS: AN INTRODUCTION TO LIMITS AND COLIMITS 113

on the left below:

C Y

X A

cx

cy

ca 1

f

X ×A Y Y

X A

cx

cy

1

f

y

The fact that the diagram commutes means that the diagonal arrow ca is in some

sense superfluous, so one generally denotes pullbacks by dropping the diagonal arrow,

naming the cone point X ×A Y, and adding the y symbol, as shown to the right above.

Here is a picture to help us unpack the definition in Set. We take X � 6, Y � 4, and

A to be the set of colors {red, blue, black}.

(1,1)
•1•

(1,2)
•2•

(1,3)
•3•

(1,4)
•4•

1•

(2,1)
•

(2,2)
•

(2,3)
•

(2,4)
•

2•

(3,1)
•

(3,2)
•

(3,3)
•

(3,4)
•

3•

(4,1)
•

(4,2)
•

(4,3)
•

(4,4)
•

4•

(5,1)
•

(5,2)
•

(5,3)
•

(5,4)
•

5•

(6,1)
•

(6,2)
•

(6,3)
•

(6,4)
•

6•

The functions f : 6 → A and 1 : 4 → A are expressed in the coloring of the dots: for

example, 1(2) � 1(4) � red, while f (5) � black. The pullback selects pairs (i , j) ∈ 6 × 4

such that f (i) and 1(j) have the same color.

Remark 3.100. As mentioned following Definition 3.68, this definition of pullback is

not to be confused with the pullback of a set-valued functor along a functor; they are

for now best thought of as different concepts which accidentally have the same name.

Due to the power of the primordial ooze, however, the pullback along a functor is a

special case of pullback as the limit of a cospan: it can be understood as the pullback

of a certain cospan in Cat. To unpack this, however, requires the notions of category of

elements and discrete opfibration; ask your friendly neighborhood category theorist.

3.5.4 A brief note on colimits

Just like upper bounds have a dual concept—namely that of lower bounds—so limits

have a dual concept: colimits. To expose the reader to this concept, we provide a

succinct definition of these using opposite categories and opposite functors. The point,

however, is just exposure; we will return to explore colimits in detail in Chapter 6.

Exercise 3.101. Recall from Example 3.27 that every category C has an opposite Cop
.

Let F : C→ D be a functor. How should we define its opposite, Fop
: Cop → Dop

? That

114 CHAPTER 3. DATABASES: CATEGORIES, FUNCTORS, AND (CO)LIMITS

is, how should Fop
act on objects, and how should it act on morphisms? ♦

Definition 3.102. Given a category C we say that a cocone in C is a cone in Cop
.

Given a diagram D : J → C, we may take the limit of the functor Dop
: Jop → Cop

.

This is a cone in Cop
, and so by definition a cocone in C. The colimit of D is this cocone.

Definition 3.102 is like a compressed file: useful for transmitting quickly, but com-

pletely useless for workingwith, unless you can successfully unpack it. Wewill unpack

it later in Chapter 6 when we discuss electric circuits.

3.6 Summary and further reading

Congratulations on making it through one of the longest chapters in the book! We

apologize for the length, but this chapter had a lot of work to do. Namely it introduced

the “big three” of category theory—categories, functors, and natural transformations—

as well as discussed adjunctions, limits, and very briefly colimits.

That’s really quite a bit of material. For more on all these subjects, one can consult

any standard book on category theory, of which there are many. The bible (old,

important, seminal, and requires a priest to explain it) is [Mac98]; another thorough

introduction is [Bor94]; a logical perspective is given in [Awo10]; a computer science

perspective is given in [BW90] and [Pie91] and [Wal92]; math students should probably

read [Lei14] or [Rie17] or [Gra18]; a general audience might start with [Spi14a].

We presented categories from a database perspective, because data is pretty ubiq-

uitous in our world. A database schema—i.e. a system of interlocking tables—can be

capturedby a categoryC, andfilling itwithdata corresponds to a functorC→ Set. Here

Set is the category of sets, perhaps the most important category to mathematicians.

The perspective of using category theory to model databases has been rediscovered

several times. It seems to have first been discussed by various authors around the

mid-90’s [IP94; CD95; PS95; TG96]. Bob Rosebrugh and collaborators took it much

further in a series of papers including [FGR03; JR02; RW92]. Most of these authors

tend to focus on sketches, which are more expressive categories. Spivak rediscovered

the idea again quite a bit later, but focused on categories rather than sketches, so as to

have all three data migration functors ∆,Σ,Π; see [Spi12; SW15b]. The version of this

story presented in the chapter, including the white and black nodes in schemas, is part

of a larger theory of algebraic databases, where a programming language such as Java

or Haskell is attached to a database. The technical details are worked out in [Sch+17],

and its use in database integration projects can be found in [SW15a; Wis+15].

Beforewe leave this chapter, wewant to emphasize two things: coherence conditions

and universal constructions.

Coherence conditions. In the definitions of category, functor, andnatural transforma-

tions, we have data (indexed by (i)) that is required to satisfy certain properties (indexed

3.6. SUMMARY AND FURTHER READING 115

by (a)). Indeed, for categories it was about associativity and unitality of composition,

for functors it was about respecting composition and identities, and for natural trans-

formations it was the naturality condition. These conditions are often called coherence
conditions: we want the various structures to cohere, to work well together, rather than

to flop around unattached.

Understanding why these particular structures and coherence conditions are “the

right ones” is more science than mathematics: we empirically observe that certain

combinations result in ideas that are both widely applicable and also strongly compo-

sitional. That is, we become satisfied with coherence conditions when they result in

beautiful mathematics down the road.

Universal constructions. Universal constructions are one of the most important

themes of category theory. Roughly speaking, one gives some specified shape in a

category and says “find me the best solution!” And category theory comes back and

says “do you want me to approximate from the left or the right (colimit or limit)?” You

respond, and either there is a best solution or there is not. If there is, it’s called the

(co)limit; if there’s not we say “the (co)limit does not exist.”

Even data migration fits this form. We say “find me the closest thing in D that

matches my C-instance using my functor F : C → D.” In fact this approach—known

as Kan extensions—subsumes the others. One of the two founders of category theory,

Saunders Mac Lane, has a section in his book [Mac98] called “All concepts are Kan

extensions,” a big statement, no?

MIT OpenCourseWare
https://ocw.mit.edu/

18.S097 Applied Category Theory
January IAP 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

	1 Generative effects: Orders and adjunctions
	1.1 More than the sum of their parts
	1.1.1 A first look at generative effects
	1.1.2 Ordering systems

	1.2 What is order?
	1.2.1 Review of sets, relations, and functions
	1.2.2 Preorders
	1.2.3 Monotone maps

	1.3 Meets and joins
	1.3.1 Definition and basic examples
	1.3.2 Back to observations and generative effects

	1.4 Galois connections
	1.4.1 Definition and examples of Galois connections
	1.4.2 Back to partitions
	1.4.3 Basic theory of Galois connections
	1.4.4 Closure operators
	1.4.5 Level shifting

	1.5 Summary and further reading

	2 Resources: monoidal preorders and enrichment
	2.1 Getting from a to b
	2.2 Symmetric monoidal preorders
	2.2.1 Definition and first examples
	2.2.2 Introducing wiring diagrams
	2.2.3 Applied examples
	2.2.4 Abstract examples
	2.2.5 Monoidal monotone maps

	2.3 Enrichment
	2.3.1 V-categories
	2.3.2 Preorders as Bool-categories
	2.3.3 Lawvere metric spaces
	2.3.4 V-variations on preorders and metric spaces

	2.4 Constructions on V-categories
	2.4.1 Changing the base of enrichment
	2.4.2 Enriched functors
	2.4.3 Product V-categories

	2.5 Computing presented V-categories with matrix mult.
	2.5.1 Monoidal closed preorders
	2.5.2 Quantales
	2.5.3 Matrix multiplication in a quantale

	2.6 Summary and further reading

	3 Databases: Categories, functors, and (co)limits
	3.1 What is a database?
	3.2 Categories
	3.2.1 Free categories
	3.2.2 Presenting categories via path equations
	3.2.3 Preorders and free categories: two ends of a spectrum
	3.2.4 Important categories in mathematics
	3.2.5 Isomorphisms in a category

	3.3 Functors, natural transformations, and databases
	3.3.1 Sets and functions as databases
	3.3.2 Functors
	3.3.3 Database instances as Set-valued functors
	3.3.4 Natural transformations
	3.3.5 The category of instances on a schema

	3.4 Adjunctions and data migration
	3.4.1 Pulling back data along a functor
	3.4.2 Adjunctions
	3.4.3 Left and right pushforward functors, and
	3.4.4 Single set summaries of databases

	3.5 Bonus: An introduction to limits and colimits
	3.5.1 Terminal objects and products
	3.5.2 Limits
	3.5.3 Finite limits in Set
	3.5.4 A brief note on colimits

	3.6 Summary and further reading

	4 Co-design: profunctors and monoidal categories
	4.1 Can we build it?
	4.2 Enriched profunctors
	4.2.1 Feasibility relationships as Bool-profunctors
	4.2.2 V-profunctors
	4.2.3 Back to co-design diagrams

	4.3 Categories of profunctors
	4.3.1 Composing profunctors
	4.3.2 The categories V-Prof and Feas
	4.3.3 Fun profunctor facts: companions, conjoints, collages

	4.4 Categorification
	4.4.1 The basic idea of categorification
	4.4.2 A reflection on wiring diagrams
	4.4.3 Monoidal categories
	4.4.4 Categories enriched in a symmetric monoidal category

	4.5 Profunctors form a compact closed category
	4.5.1 Compact closed categories
	4.5.2 Feas as a compact closed category

	4.6 Summary and further reading

	5 Signal flow graphs: Props, presentations, & proofs
	5.1 Comparing systems as interacting signal processors
	5.2 Props and presentations
	5.2.1 Props: definition and first examples
	5.2.2 The prop of port graphs
	5.2.3 Free constructions and universal properties
	5.2.4 The free prop on a signature
	5.2.5 Props via presentations

	5.3 Simplified signal flow graphs
	5.3.1 Rigs
	5.3.2 The iconography of signal flow graphs
	5.3.3 The prop of matrices over a rig
	5.3.4 Turning signal flow graphs into matrices
	5.3.5 The idea of functorial semantics

	5.4 Graphical linear algebra
	5.4.1 A presentation of Mat(R)
	5.4.2 Aside: monoid objects in a monoidal category
	5.4.3 Signal flow graphs: feedback and more

	5.5 Summary and further reading

	6 Circuits: hypergraph categories and operads
	6.1 The ubiquity of network languages
	6.2 Colimits and connection
	6.2.1 Initial objects
	6.2.2 Coproducts
	6.2.3 Pushouts
	6.2.4 Finite colimits
	6.2.5 Cospans

	6.3 Hypergraph categories
	6.3.1 Frobenius monoids
	6.3.2 Wiring diagrams for hypergraph categories
	6.3.3 Definition of hypergraph category

	6.4 Decorated cospans
	6.4.1 Symmetric monoidal functors
	6.4.2 Decorated cospans
	6.4.3 Electric circuits

	6.5 Operads and their algebras
	6.5.1 Operads design wiring diagrams
	6.5.2 Operads from symmetric monoidal categories
	6.5.3 The operad for hypergraph props

	6.6 Summary and further reading

	7 Logic of behavior: Sheaves, toposes, languages
	7.1 How can we prove our machine is safe?
	7.2 The category Set as an exemplar topos
	7.2.1 Set-like properties enjoyed by any topos
	7.2.2 The subobject classifier
	7.2.3 Logic in the topos Set

	7.3 Sheaves
	7.3.1 Presheaves
	7.3.2 Topological spaces
	7.3.3 Sheaves on topological spaces

	7.4 Toposes
	7.4.1 The subobject classifier in a sheaf topos
	7.4.2 Logic in a sheaf topos
	7.4.3 Predicates
	7.4.4 Quantification
	7.4.5 Modalities
	7.4.6 Type theories and semantics

	7.5 A topos of behavior types
	7.5.1 The interval domain
	7.5.2 Sheaves on I R
	7.5.3 Safety proofs in temporal logic

	7.6 Summary and further reading

	A Exercise solutions
	A.1 Solutions for Chapter 1
	A.2 Solutions for Chapter 2
	A.3 Solutions for Chapter 3
	A.4 Solutions for Chapter 4
	A.5 Solutions for Chapter 5
	A.6 Solutions for Chapter 6
	A.7 Solutions for Chapter 7

	Bibliography
	Index

