
Chapter 2

Resource theories:
Monoidal preorders and enrichment

2.1 Getting from a to b

You can’t make an omelette without breaking an egg. To obtain the things we want

requires resources, and the process of transforming what we have into what we want

is often an intricate one. In this chapter, we will discuss how monoidal preorders can

help us think about this matter.

Consider the following three questions you might ask yourself:

• Given what I have, is it possible to get what I want?

• Given what I have, what is the minimum cost to get what I want?

• Given what I have, what is the set of ways to get what I want?

These questions are about resources—those youhave and those youwant—but perhaps

more importantly, they are about moving from have to want: possibility of, cost of, and

ways to.

Such questions come up not only in our lives, but also in science and industry.

In chemistry, one asks whether a certain set of compounds can be transformed into

another set, how much energy such a reaction will require, or what methods exist for

making it happen. In manufacturing, one asks similar questions.

From an external point of view, both a chemist and an industrial firm might be

regarded as store-houses of information on the above subjects. The chemist knows

which compounds she can make given other ones, and how to do so; the firm has

stored knowledge of the same sort. The research work of the chemist and the firm is to

use what they know in order to derive—or discover—new knowledge.

This is roughly the first goal of this chapter: to discuss a formalism for expressing

recipes—methods for transforming one set of resources into another—and for deriving

new recipes from old. The idea here is not complicated, neither in life nor in our

mathematical formalism. The value added then is to simply see how it works, so we
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40 CHAPTER 2. RESOURCES: MONOIDAL PREORDERS AND ENRICHMENT

can build on it within the book, and so others can build on it in their own work.

We briefly discuss the categorical approach to this idea—namely that of monoidal
preorders—for building new recipes from old. The following wiring diagram shows,

assuming one knows how to implement each of the interior boxes, how to implement

the preparation of a lemon meringue pie:

make

lemon

filling

make

meringue

separate

egg

fill crust

add

meringue

prepare lemon meringue pie

prepared crust

lemon

butter

sugar

egg

sugar

yolk

white

lemon

filling

unbaked

lemon pie

meringue

unbaked

pie

(2.1)

The wires show resources: we start with prepared crust, lemon, butter, sugar, and egg

resources, and we end up with an unbaked pie resource. We could take this whole

method and combine it with others, e.g. baking the pie:

prepare lemon meringue pie

bake pie

oven

unbaked

pie

baked pie

oven

In the above example we see that resources are not always consumed when they are

used. For example, we use an oven to convert—or catalyze the transformation of—an

unbaked pie into a baked pie, and we get the oven back after we are done. It’s a nice

feature of ovens! To use economic terms, the oven is a “means of production” for pies.

String diagrams are important mathematical objects that will come up repeatedly

in this book. They were invented in the mathematical context—more specifically in the

context of monoidal categories—by Joyal and Street [JS93], but they have been used

less formally by engineers and scientists in various contexts for a long time.

As we said above, our first goal in this chapter is to use monoidal preorders, and

the corresponding wiring diagrams, as a formal language for recipes from old. Our

second goal is to discuss something calledV-categories for variousmonoidal preorders

V.
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A V-category is a set of objects, which one may think of as points on a map, where

V somehow “structures the question” of getting from point a to point b. The examples

of monoidal preorders V that we will be most interested in are called Bool and Cost.
Roughly speaking, a Bool-category is a set of points where the question of getting from

point a to point b has a true / false answer. A Cost-category is a set of points where

the question of getting from a to b has an answer d ∈ [0,∞], a cost.
This story works in more generality than monoidal preorders. Indeed, in Chapter 4

we will discuss something called a monoidal category, a notion which generalizes

monoidal preorders, and we will generalize the definition of V-category accordingly.

In this more general setting, V-categories can also address our third question above,

describing methods of getting between points. For example a Set-category is a set of

points where the question of getting from point a to point b has a set of answers

(elements of which might be called methods).

We will begin in Section 2.2 by defining symmetric monoidal preorders, giving a

few preliminary examples, and discussing wiring diagrams. We then give many more

examples of symmetricmonoidal preorders, including both some real-world examples,

in the form of resource theories, and some mathematical examples that will come up

again throughout the book. In Section 2.3 we discuss enrichment and V-categories—

how a monoidal preorder V can “structure the question” of getting from a to b—and

then give some important constructions onV-categories (Section 2.4), and analyze them

using a sort of matrix multiplication technique (Section 2.5).

2.2 Symmetric monoidal preorders

In Section 1.2.2 we introduced preorders. The notation for a preorder, namely (X, ≤),
refers to two pieces of structure: a set called X and a relation called ≤ that is reflexive

and transitive.

We want to add to the concept of preorders a way of combining elements in X, an

operation taking two elements and adding or multiplying them together. However,

the operation does not have to literally be addition or multiplication; it only needs to

satisfy some of the properties one expects from them.

2.2.1 Definition and first examples

We begin with a formal definition of symmetric monoidal preorders.

Definition 2.2. A symmetric monoidal structure on a preorder (X, ≤) consists of two

constituents:

(i) an element I ∈ X, called the monoidal unit, and
(ii) a function ⊗ : X × X → X, called the monoidal product.

These constituents must satisfy the following properties, where we write ⊗(x1 , x2) �
x1 ⊗ x2:
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(a) for all x1 , x2 , y1 , y2 ∈ X, if x1 ≤ y1 and x2 ≤ y2, then x1 ⊗ x2 ≤ y1 ⊗ y2,

(b) for all x ∈ X, the equations I ⊗ x � x and x ⊗ I � x hold,

(c) for all x , y , z ∈ X, the equation (x ⊗ y) ⊗ z � x ⊗ (y ⊗ z) holds, and
(d) for all x , y ∈ X, the equation x ⊗ y � y ⊗ x holds.

We call these conditionsmonotonicity, unitality, associativity, and symmetry respectively.
A preorder equipped with a symmetric monoidal structure, (X, ≤, I , ⊗), is called a

symmetric monoidal preorder.

Anyone can propose a set X, an order ≤ on X, an element I in X, and a binary

operation ⊗ on X and ask whether (X, ≤, I , ⊗) is a symmetric monoidal preorder. And

it will indeed be one, as long as it satisfies rules a, b, c, and d of Definition 2.2.

Remark 2.3. It is often useful to replace�with � throughout Definition 2.2. The result is

a perfectly good notion, called a weak monoidal structure. The reason we chose equality

is that it makes equations look simpler, which we hope aids first-time readers.

The notation for the monoidal unit and the monoidal product may vary: monoidal

units we have seen include I (as in the definition), 0, 1, true, false, {∗}, and more.

Monoidal products we have seen include ⊗ (as in the definition), +, ∗, ∧, ∨, and ×. The
preferred notation in a given setting is whatever best helps our brains remember what

we’re trying to do; the names I and ⊗ are just defaults.

Example 2.4. There is a well-known preorder structure, denoted ≤, on the set R of real

numbers; e.g. −5 ≤
√

2. We propose 0 as a monoidal unit and + : R × R → R as a

monoidal product. Does (R, ≤, 0,+) satisfy the conditions of Definition 2.2?

If x1 ≤ y1 and x2 ≤ y2, it is true that x1 + x2 ≤ y1 + y2. It is also true that 0 + x � x
and x + 0 � x, that (x + y) + z � x + (y + z), and that x + y � y + x. Thus (R, ≤, 0,+)
satisfies the conditions of being a symmetric monoidal preorder.

Exercise 2.5. Consider again the preorder (R, ≤) from Example 2.4. Someone proposes

1 as a monoidal unit and ∗ (usual multiplication) as a monoidal product. But an expert

walks by and says “that won’t work.” Figure out why, or prove the expert wrong! ♦

Example 2.6. A monoid consists of a set M, a function ∗ : M ×M → M called the monoid
multiplication, and an element e ∈ M called the monoid unit, such that, when you write

∗(m , n) as m ∗ n, i.e. using infix notation, the equations

m ∗ e � m , e ∗ m � m , (m ∗ n) ∗ p � m ∗ (n ∗ p) (2.7)

hold for all m , n , p ∈ M. It is called commutative if also m ∗ n � n ∗ m.

Every set S determines a discrete preorder DiscS (where m ≤ n iff m � n; see
Example 1.32), and it is easy to check that if (M, e , ∗) is a commutative monoid then

(DiscM ,�, e , ∗) is a symmetric monoidal preorder.
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Exercise 2.8. We said it was easy to check that if (M, ∗, e) is a commutative monoid

then (DiscM ,�, ∗, e) is a symmetric monoidal preorder. Are we telling the truth? ♦

Example 2.9. Here is a non-example for people who know the game “standard poker.”

Let H be the set of all poker hands, where a hand means a choice of five cards from the

standard 52-card deck. As an order, put h ≤ h′ if h′ beats or equals h in poker.

One could propose a monoidal product ⊗ : H × H → H by assigning h1 ⊗ h2 to be

“the best hand one can form out of the ten cards in h1 and h2.” If some cards are in

both h1 and h2, just throw the duplicates away. So for example {2♥, 3♥, 4♥, 6♠, 7♠} ⊗
{2♥, 5♥, 6♥, 6♠, 7♠} � {2♥, 3♥, 4♥, 5♥, 6♥}, because the latter is the best hand you

can make with the former two.

This proposal for a monoidal structure will fail the condition (a) of Definition 2.2: it

could be the case that h1 ≤ i1 and h2 ≤ i2, and yet not be the case that h1 ⊗ h2 ≤ i1 ⊗ i2.

For example, consider this case:

h1 B {2♥, 3♥, 10♠, J♠, Q♠} i1 B {4♣, 4♠, 6♥, 6♦, 10♦}
h2 B {2♦, 3♦, 4♦, K♠, A♠} i2 B {5♠, 5♥, 7♥, J♦, Q♦}.

Here, h1 ≤ i1 and h2 ≤ i2, but h1 ⊗ h2 � {10♠, J♠, Q♠, K♠, A♠} is the best possible

hand and beats i1 ⊗ i2 � {5♠, 5♥, 6♥, 6♦, Q♦}.

Subsections 2.2.3 and 2.2.4 are dedicated to examples of symmetric monoidal pre-

orders. Some are aligned with the notion of resource theories, others come from pure

math. When discussing the former, we will use wiring diagrams, so here is a quick

primer.

2.2.2 Introducing wiring diagrams

Wiring diagrams are visual representations for building new relationships from old. In

a preorder without a monoidal structure, the only sort of relationship between objects

is ≤, and the only way you build a new ≤ relationship from old ones is by chaining

them together. We denote the relationship x ≤ y by

≤x y
(2.10)

We can chain some number of these ≤-relationships—say 0, 1, 2, or 3 of them—together

in series as shown here

≤x0 ≤x0 x1 ≤ ≤x0 x1 x2 ≤ ≤ ≤x0 x1 x2 x3 · · ·

(2.11)
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If we add a symmetric monoidal structure, we can combine relationships not only

in series but also in parallel. Here is an example:

≤

≤

≤t

u

v
w x

y

z
(2.12)

Different styles ofwiringdiagrams In fact, wewill see later that there aremany styles

of wiring diagrams. When we are dealing with preorders, the sort of wiring diagram

we can draw is that with single-input, single-output boxes connected in series. When

we are dealing with symmetric monoidal preorders, we can have more complex boxes

and more complex wiring diagrams, including parallel composition. Later we will see

that for other sorts of categorical structures, there are other styles of wiring diagrams:

(2.13)

Wiring diagrams for symmetric monoidal preorders The style of wiring diagram

thatmakes sense in any symmetricmonoidal preorder is that shown in Eq. (2.12): boxes

can have multiple inputs and outputs, and they may be arranged in series and parallel.

Symmetric monoidal preorders and their wiring diagrams are tightly coupled with

each other. How so?

The answer is that a monoidal preorder (X, ≤, I , ⊗) has some notion of element

(x ∈ X), relationship (≤), and combination (using transitivity and ⊗), and so do wiring

diagrams: the wires represent elements, the boxes represent relationships, and the

wiring diagrams themselves show how relationships can be combined. We call boxes

and wires icons; we will encounter several more icons in this chapter, and throughout

the book.

To get a bit more rigorous about the connection, let’s start with amonoidal preorder

(X, ≤, I , ⊗) as in Definition 2.2. Wiring diagrams have wires on the left and the right.

Each element x ∈ X can be made the label of a wire. Note that given two objects x , y,
we can either draw two wires in parallel—one labeled x and one labeled y—or we can

draw one wire labeled x ⊗ y.

x

y x ⊗ y

We consider wires in parallel to represent the monoidal product of their labels, so we

consider both cases above to represent the element x ⊗ y. Note also that a wire labeled
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I or an absence of wires:

I
nothing

both represent the monoidal unit I; another way of thinking of this is that the unit is

the empty monoidal product.

Awiring diagram runs between a set of parallel wires on the left and a set of parallel

wires on the right. We say that a wiring diagram is valid if the monoidal product of

the elements on the left is less than the monoidal product of those on the right. For

example, if we have the inequality x ≤ y, the the diagram that is a box with a wire

labeled x on the left and a wire labeled y on the right is valid; see the first box below:

≤x y ≤
x1

x2

y1

y2

y3

The validity of the second box corresponds to the inequality x1 ⊗ x2 ≤ y1 ⊗ y2 ⊗ y3.

Before going on to the properties from Definition 2.2, let us pause for an example of

what we’ve discussed so far.

Example 2.14. Recall the symmetric monoidal preorder (R, ≤, 0,+) from Example 2.4.

The wiring diagrams for it allow wires labeled by real numbers. Drawing wires in

parallel corresponds to adding their labels, and the wire labeled 0 is equivalent to no

wires at all.

3.14 −1

3.14

−1

=

2.14 0

= nothing

And here we express a couple facts about (R, ≤, 0,+) in this language: 4 ≤ 7 and

2 + 5 ≤ −1 + 5 + 3.

≤
4 7

≤
2

5

−1

5

3

We now return to how the properties of symmetric monoidal preorders correspond

to properties of this sort of wiring diagram. Let’s first talk about the order structure:

conditions (a)—reflexivity—and (b)—transitivity—from Definition 1.30. Reflexivity

says that x ≤ x, this means the diagram just consisting of a wire

x

is always valid. Transitivity allows us to connect facts together: it says that if x ≤ y
and y ≤ z, then x ≤ z. This means that if the diagrams

≤x y
and ≤y z
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are valid, we can put them together and obtain the valid diagram

≤x ≤y z

Next let’s talk about theproperties (a)–(d) fromthedefinitionof symmetricmonoidal

structure (Definition 2.2). Property (a) says that if x1 ≤ y1 and x2 ≤ y2 then x1 ⊗ x2 ≤
y1 ⊗ y2. This corresponds to the idea that stacking any two valid boxes in parallel is

still valid:

≤

≤
≤{

x1

x2

y1

y2

x1

x2

y1

y2

Condition (b), that I ⊗ x � x and x ⊗ I � x, says we don’t need to worry about I or

blank space; in particular diagrams such as the following are valid:

x

nothing
x

Condition (c), that (x ⊗ y) ⊗ z � x ⊗ (y ⊗ z) says that we don’t have to worry about

whether we build up diagrams from the top or from the bottom

x

y
=

x ⊗ y

z

=

x

y ⊗ z
=

y

z

But this looks much harder than it is: the associative property should be thought of as

saying that there is no distinction between the stuff on the very left above and the stuff

on the very right, i.e.

x

y

z

=

x
y

z

and indeed a diagram that moves from one to the other is valid.

Finally, the symmetry condition (d), that x ⊗ y � y ⊗ x, says that a diagram is valid

even if its wires cross:

x
y

y
x

y
x

x
y

One may regard the pair of crossing wires as another icon in our iconography, in

addition to the boxes and wires we already have.
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Wiring diagrams as graphical proofs Given a monoidal preorder X � (X, ≤, I , ⊗), a
wiring diagram is a graphical proof of something about X. Each box in the diagram

has a left side and a right side, say x and y, and represents the assertion that x ≤ y.

≤x y

A wiring diagram is a bunch of interior boxes connected together inside an exterior

box. It represents a graphical proof that says: if all of the interior assertions are correct,

then so is the exterior assertion.

≤

≤

≤t

u

v

w x

y

z

(2.15)

The inner boxes in Eq. (2.15) translate into the assertions:

t ≤ v + w w + u ≤ x + z v + x ≤ y (2.16)

and the outer box translates into the assertion:

t + u ≤ y + z. (2.17)

The whole wiring diagram 2.15 says “if you know that the assertions in 2.16 are true,

then I am a proof that the assertion in 2.17 is also true.” What exactly is the proof that

diagram 2.15 represents? It is the proof

t + u ≤ v + w + u ≤ v + x + z ≤ y + z. (2.18)

Indeed, each inequality here is a vertical slice of the diagram 2.15, and the transitivity

of these inequalities is expressed by connecting these vertical slices together.

Example 2.19. Recall the lemon meringue pie wiring diagram from Eq. (2.1). It has five

interior boxes, such as “separate egg” and “fill crust,” and it has one exterior box called

“prepare lemon meringue pie.” Each box is the assertion that, given the collection of

resources on the left, say an egg, you can transform it into the collection of resources on

the right, say an egg white and an egg yolk. The whole string diagram is a proof that

if each of the interior assertions is true—i.e. you really do know how to separate eggs,

make lemon filling, make meringue, fill crust, and add meringue—then the exterior

assertion is true: you can prepare a lemon meringue pie.

Exercise 2.20. The string of inequalities in Eq. (2.18) is not quite a proof, because

technically there is no such thing as v +w + u, for example. Instead, there is (v +w)+ u
and v + (w + u), and so on.
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1. Formally prove, using only the rules of symmetric monoidal preorders (Defi-

nition 2.2), that given the assertions in Eq. (2.16), the conclusion in Eq. (2.17)

follows.

2. Reflexivity and transitivity should show up in your proof. Make sure you are

explicit about where they do.

3. How can you look at the wiring diagram Eq. (2.12) and know that the symmetry

axiom (Definition 2.2(d)) does not need to be invoked? ♦

We next discuss some examples of symmetric monoidal preorders. We begin in

Section 2.2.3 with some more concrete examples, from science, commerce, and infor-

matics. Then in Section 2.2.4 we discuss some examples arising from pure math, some

of which will get a good deal of use later on, e.g. in Chapter 4.

2.2.3 Applied examples

Resource theories are studies of how resources are exchanged in a given arena. For

example, in social resource theory one studies a marketplace where combinations of

goods can be traded for—as well as converted into—other combinations of goods.

Whereas marketplaces are very dynamic, and an apple might be tradable for an

orange on Sunday but not on Monday, what we mean by resource theory in this

chapter is a static notion: deciding “what buys what,” once and for all.1 This sort of

static notion of conversion might occur in chemistry: the chemical reactions that are

possible one day will quite likely be possible on a different day as well. Manufacturing

may be somewhere in between: the set of production techniques—whereby a company

can convert one set of resources into another—do not change much from day to day.

We learned about resource theories from [CFS16; Fri17], who go much further than

we will; see Section 2.6 for more information. In this section we will focus only on

the main idea. While there are many beautiful mathematical examples of symmetric

monoidal preorders, as we will see in Section 2.2.4, there are also ad hoc examples

coming from life experience. In the next chapter, on databases, we will see the same

theme: while there are some beautiful mathematical categories out there, database

schemas are ad hoc organizational patterns of information. Describing something as

“ad hoc” is often considered derogatory, but it just means “formed, arranged, or done

for aparticularpurposeonly.” There is nothingwrongwithdoing things for aparticular

purpose; it’s common outside of pure math and pure art. Let’s get to it.

Chemistry In high school chemistry, we work with chemical equations, where mate-

rial collections such as

H2O, NaCl, 2NaOH, CH4 + 3O2

1
Using some sort of temporal theory, e.g. the one presented in Chapter 7, one could take the notion

here and have it change in time.
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are put together in the form of reaction equations, such as

2H2O + 2Na→ 2NaOH + H2.

The collection on the left, 2H2O + 2Na is called the reactant, and the collection on the

right, 2NaOH + H2 is called the product.
We can consider reaction equations such as the one above as taking place inside a

single symmetricmonoidal preorder (Mat,→, 0,+). HereMat is the set of all collections

of atoms and molecules, sometimes called materials. So we have NaCl ∈ Mat and

4H2O + 6Ne ∈ Mat.

The set Mat has a preorder structure denoted by the → symbol, which is the

preferred symbol in the setting of chemistry. To be clear, → is taking the place of

the order relation ≤ from Definition 2.2. The + symbol is the preferred notation for

the monoidal product in the chemistry setting, taking the place of ⊗. While it does not

come up in practice, we use 0 to denote the monoidal unit.

Exercise 2.21. Here is an exercise for people familiar with reaction equations: check

that conditions (a), (b), (c), and (d) of Definition 2.2 hold. ♦

An important notion in chemistry is that of catalysis: one compound catalyzes a

certain reaction. For example, one might have the following set of reactions:

y + k → y′ + k′ x + y′→ z′ z′ + k′→ z + k (2.22)

Using the laws of monoidal preorders, we obtain the composed reaction

x + y + k → x + y′ + k′→ z′ + k′→ z + k. (2.23)

Here k is the catalyst because it is found both in the reactant and the product of the

reaction. It is said to catalyze the reaction x + y → z. The idea is that the reaction

x+ y → z cannot take place given the reactions in Eq. (2.22). But if k is present, meaning

if we add k to both sides, the resulting reaction can take place.

The wiring diagram for the reaction in Eq. (2.23) is shown in Eq. (2.24). The three

interior boxes correspond to the three reactions given in Eq. (2.22), and the exterior box

corresponds to the composite reaction x + y + k → z + k.

→

→

→
y

k

x

y′

k′

z′

z

k

(2.24)

Manufacturing Whether we are talking about baking pies, building smart phones,

or following pharmaceutical recipes, manufacturing firms need to store basic recipes,

and build new recipes by combining simpler recipes in schemes like the one shown in

Eq. (2.1) or Eq. (2.24).
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The basic idea in manufacturing is exactly the same as that for chemistry, except

there is an important assumption we can make in manufacturing that does not hold

for chemical reactions:

You can trash anything you want, and it disappears from view.

This simple assumption has caused the world some significant problems, but it is still

in effect. In ourmeringue pie example, we can ask: “what happened to the egg shell, or

the paper wrapping the stick of butter”? The answer is they were trashed, i.e. thrown

in the garbage bin. It would certainly clutter our diagram and our thinking if we had

to carry these resources through the diagram:

make

lemon

filling

make

meringue

separate

egg

fill crust

add

meringue

prepare lemon meringue pie, keeping track of waste

crust

lemon

butter

sugar

egg

sugar

yolk

egg shells

white

lemon

filling

lemon peel

butter wrapper

unbaked

lemon pie

meringue

unbaked

pie

Instead, in our daily lives and in manufacturing, we do not have to hold on to

something if we don’t need it; we can just discard it. In terms of wiring diagrams, this

can be shown using a new icon , as follows:

•discard

(2.25)

To model this concept of waste using monoidal categories, one just adds an addi-

tional axiom to (a), (b), (c), and (d) from Definition 2.2:

(e) x ≤ I for all x ∈ X. (discard axiom)

It says that every x can be converted into the monoidal unit I. In the notation of the

chemistry section, we would write instead x → 0: any x yields nothing. But this is

certainly not accepted in the chemistry setting. For example,

H2O + NaCl→?

H2O
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is certainly not a legal chemical equation. It is easy to throw things away in manufac-

turing, because we assume that we have access to—the ability to grab onto and directly

manipulate—each item produced. In chemistry, when you have 10
23

of substance A
dissolved in something else, you cannot just simply discard A. So axiom (e) is valid in

manufacturing but not in chemistry.

Recall that in Section 2.2.2 we said that there were many different styles of wiring

diagrams. Nowwe’re saying that adding thediscard axiomchanges thewiringdiagram

style, in that it adds this new discard icon that allows wires to terminate, as shown in

Eq. (2.25). In informatics, we will change the wiring diagram style yet again.

Informatics A major difference between information and a physical object is that

information can be copied. Whereas one cup of butter never becomes two, it is easy for

a single email to be sent to two different people. It is much easier to copy a music file

than it is to copy a CD. Here we do not mean “copy the information from one compact

disc onto another”—of course that’s easy—instead, we mean that it’s quite difficult

to copy the physical disc, thereby forming a second physical disc! In diagrams, the

distinction is between the relation

copy cd

Beyoncé cd

blank cd

Beyoncé cd

Beyoncé cd

and the relation

no, I mean

literally copy cd!

Beyoncé cd

Beyoncé cd

Beyoncé cd

The former is possible, the latter is magic.

Of course material objects can sometimes be copied; cell mitosis is a case in point.

But this is a remarkable biological process, certainly not something that is expected

for ordinary material objects. In the physical world, we would make mitosis a box

transforming one cell into two. But in (classical, not quantum) information, everything

can be copied, so we add a new icon to our repertoire.

Namely, in wiring diagram notation, copying information appears as a new icon,

, allowing us to split wires:

write •
calendar

maps

email

email

email
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Now with two copies of the email, we can send one to Alice and one to Bob.

write •

send to Alice

send to Bob

calendar

maps

email

email

email

email sent to Alice

email sent to Bob

(2.26)

Information can also be discarded, at least in the conventional way of thinking, so

in addition to axioms (a) to (d) fromDefinition 2.2, we can keep axiom (e) from page 50

and add a new copy axiom:

(f) x ≤ x + x for all x ∈ X. (copy axiom)

allowing us to make mathematical sense of diagrams like Eq. (2.26).

Now that we have examples of monoidal preorders under our belts, let’s discuss

some nice mathematical examples.

2.2.4 Abstract examples

In this sectionwe discuss several mathematical examples of symmetricmonoidal struc-

tures on preorders.

The Booleans The simplest nontrivial preorder is the booleans: B � {true, false}
with false ≤ true. There are two different symmetric monoidal structures on it.

Example 2.27 (Booleans with AND). We can define amonoidal structure onB by letting

the monoidal unit be true and the monoidal product be ∧ (AND). If one thinks of

false � 0 and true � 1, then ∧ corresponds to the usual multiplication operation ∗.
That is, with this correspondence, the two tables below match up:

∧ false true

false false false

true false true

∗ 0 1

0 0 0

1 0 1

(2.28)

One can check that all the properties in Definition 2.2 hold, so we have a monoidal

preorder which we denote Bool B (B, ≤, true,∧).

Bool will be important when we get to the notion of enrichment. Enriching in a

monoidal preorder V � (V, ≤, I , ⊗) means “letting V structure the question of getting

from a to b.” All of the structures of a monoidal preorder—i.e. the set V , the ordering

relation ≤, the monoidal unit I, and the monoidal product ⊗—play a role in how

enrichment works.
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For example, let’s look at the case of Bool � (B, ≤, true,∧). The fact that its

underlying set is B � {false, true} will translate into saying that “getting from a to b
is a true/false question.” The fact that true is the monoidal unit will translate into

saying “you can always get from a to a.” The fact that ∧ is the monoidal product will

translate into saying “if you can get from a to b AND you can get from b to c then you

can get from a to c.” Finally, the “if-then” form of the previous sentence is coming from

the order relation ≤. We will make this more precise in Section 2.3.

We will be able to play the same game with other monoidal preorders, as we will

see after we define a monoidal preorder called Cost in Example 2.37.

Some other monoidal preorders It is a bit imprecise to call Bool “the” boolean

monoidal preorder, because there is another monoidal structure on (B, ≤), which we

describe in Exercise 2.29. The first structure, however, seems to be more useful in

practice than the second.

Exercise 2.29. Let (B, ≤) be as above, but now consider the monoidal product to be ∨
(OR).

∨ false true

false false true

true true true

max 0 1

0 0 1

1 1 1

What must the monoidal unit be in order to satisfy the conditions of Definition 2.2?

Does it satisfy the rest of the conditions? ♦

In Example 2.30 and Exercise 2.31 we give two different monoidal structures on the

preorder (N, ≤) of natural numbers, where ≤ is the usual ordering (0 ≤ 1 and 5 ≤ 16).

Example 2.30 (Natural numbers with addition). There is a monoidal structure on (N, ≤)
where the monoidal unit is 0 and the monoidal product is +, i.e. 6 + 4 � 10. It is easy

to check that x1 ≤ y1 and x2 ≤ y2 implies x1 + x2 ≤ y1 + y2, as well as all the other

conditions of Definition 2.2.

Exercise 2.31. Show there is a monoidal structure on (N, ≤) where the monoidal

product is ∗, i.e. 6 ∗ 4 � 24. What should the monoidal unit be? ♦

Example 2.32 (Divisibility and multiplication). Recall from Example 1.45 that there is

a “divisibility” order on N: we write m |n to mean that m divides into n without

remainder. So 1|m for all m and 4|12.

There is a monoidal structure on (N, | ), where the monoidal unit is 1 and the

monoidal product is ∗, i.e. 6 ∗ 4 � 24. Then if x1 |y1 and x2 |y2, then (x1 ∗ x2)|(y1 ∗ y2).
Indeed, if there is some p1 , p2 ∈ N such that x1 ∗ p1 � y1 and x2 ∗ p2 � y2, then

(p1 ∗ p2) ∗ (x1 ∗ x2) � y1 ∗ y2.
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Exercise 2.33. Again taking the divisibility order (N, | ). Someone proposes 0 as the

monoidal unit and+ as themonoidal product. Does that proposal satisfy the conditions

of Definition 2.2? Why or why not? ♦

Exercise 2.34. Consider the preorder (P, ≤)with Hasse diagram no→ maybe→ yes .
We propose a monoidal structure with yes as the monoidal unit and “min” as the

monoidal product.

1. Make sense of “min” by filling in the multiplication table with elements of P.

min no maybe yes

no ? ? ?

maybe ? ? ?

yes ? ? ?

2. Check the axioms of Definition 2.2 hold for NMY B (P, ≤, yes,min), given your

definition of min. If not, change your definition of min. ♦

Exercise 2.35. Let S be a set and let P(S) be its power set, the set of all subsets of

S, including the empty subset, � ⊆ S, and the “everything” subset, S ⊆ S. We can

give P(S) an order: A ≤ B is given by the subset relation A ⊆ B, as discussed in

Example 1.50. We propose a symmetric monoidal structure on P(S) with monoidal

unit S and monoidal product given by intersection A ∩ B.
Does it satisfy the conditions of Definition 2.2? ♦

Exercise 2.36. Let PropN denote the set of all mathematical statements one can make

about a natural number, where we consider two statements to be the same if one is true

if and only if the other is true. For example “n is prime” is an element of PropN, and so

are “n � 2” and “n ≥ 11.” The statements “n + 2 � 5” and “n is the least odd prime”

are considered the same. Given P,Q ∈ PropN, we say P ≤ Q if for all n ∈ N, whenever

P(n) is true, so is Q(n).
Define amonoidal unit and amonoidal product on PropN that satisfy the conditions

of Definition 2.2. ♦

The monoidal preorder Cost As we said above, when we enrich in monoidal pre-

orders we see them as different ways to structure the question of “getting from here

to there.” We will explain this in more detail in Section 2.3. The following monoidal

preorder will eventually structure a notion of distance or cost for getting from here to

there.

Example 2.37 (Lawvere’s monoidal preorder, Cost). Let [0,∞] denote the set of non-

negative real numbers—such as 0, 1, 15.333, and 2π—together with ∞. Consider the

preorder ([0,∞], ≥), with the usual notion of ≥, where of course∞ ≥ x for all x ∈ [0,∞].
There is a monoidal structure on this preorder, where the monoidal unit is 0 and

the monoidal product is +. In particular, x +∞ � ∞ for any x ∈ [0,∞]. Let’s call this
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monoidal preorder

Cost B ([0,∞], ≥, 0,+),

because we can think of the elements of [0,∞] as costs. In terms of structuring “getting

from here to there,” Cost seems to say “getting from a to b is a question of cost.” The

monoidal unit being 0 will translate into saying that you can always get from a to a at

no cost. Themonoidal product being+will translate into saying that the cost of getting

from a to c is at most the cost of getting from a to b plus the cost of getting from b to c.
Finally, the “at most” in the previous sentence is coming from the ≥.

The opposite of a monoidal preorder One can take the opposite of any preorder, just

flip the order: (X, ≤)op B (X, ≥); see Example 1.58. Proposition 2.38 says that if the

preorder had a symmetric monoidal structure, so does its opposite.

Proposition 2.38. Suppose X � (X, ≤) is a preorder and Xop � (X, ≥) is its opposite. If
(X, ≤, I , ⊗) is a symmetric monoidal preorder then so is its opposite, (X, ≥, I , ⊗).

Proof. Let’s first check monotonicity. Suppose x1 ≥ y1 and x2 ≥ y2 in Xop
; we need to

show that x1 ⊗ x2 ≥ y1 ⊗ y2. But by definition of opposite order, we have y1 ≤ x1 and

y2 ≤ x2 in X, and thus y1 ⊗ y2 ≤ x1 ⊗ x2 in X. Thus indeed x1 ⊗ x2 ≥ y1 ⊗ y2 in Xop
.

The other three conditions are even easier; see Exercise 2.39. �

Exercise 2.39. Complete the proof of Proposition 2.38 by proving that the three re-

maining conditions of Definition 2.2 are satisfied. ♦

Exercise 2.40. Since Cost is a symmetric monoidal preorder, Proposition 2.38 says that

Costop is too.

1. What is Costop as a preorder?

2. What is its monoidal unit?

3. What is its monoidal product? ♦

2.2.5 Monoidal monotone maps

Recall from Example 1.49 that for any preorder (X, ≤), there is an induced equivalence

relation � on X, where x � x′ iff both x ≤ x′ and x′ ≤ x.

Definition 2.41. LetP � (P, ≤P , IP , ⊗P) andQ � (Q , ≤Q , IQ , ⊗Q) bemonoidal preorders.

A monoidal monotone from P to Q is a monotone map f : (P, ≤P) → (Q , ≤Q), satisfying
two conditions:

(a) IQ ≤Q f (IP), and
(b) f (p1) ⊗Q f (p2) ≤Q f (p1 ⊗P p2)

for all p1 , p2 ∈ P.
There are strengthenings of these conditions that are also important. If f satisfies

the following conditions, it is called a strong monoidal monotone:
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(a’) IQ � f (IP), and
(b’) f (p1) ⊗Q f (p2) � f (p1 ⊗P p2);

and if it satisfies the following conditions it is called a strict monoidal monotone:
(a”) IQ � f (IP), and
(b”) f (p1) ⊗Q f (p2) � f (p1 ⊗P p2).

Monoidal monotones are examples of monoidal functors, which we will see various

incarnations of throughout the book; see Definition 6.68. What we call monoidal

monotones could also be called lax monoidal monotones, and there is a dual notion of

oplax monoidal monotones, where the inequalities in (a) and (b) are reversed; we will not

use oplaxity in this book.

Example 2.42. There is a monoidal monotone i : (N, ≤, 0,+) → (R, ≤, 0,+), where i(n) �
n for all n ∈ N. It is clearly monotonic, m ≤ n implies i(m) ≤ i(n). It is even strict

monoidal because i(0) � 0 and i(m + n) � i(m) + i(n).
There is also a monoidal monotone f : (R, ≤, 0,+) → (N, ≤, 0,+) going the other

way. Here f (x) B bxc is the floor function, e.g. f (3.14) � 3. It is monotonic because

x ≤ y implies f (x) ≤ f (y). Also f (0) � 0 and f (x)+ f (y) ≤ f (x+ y), so it is a monoidal

monotone. But it is not strict or even strong because f (0.5) + f (0.5) , f (0.5 + 0.5).

Recall Bool � (B, ≤, true,∧) from Example 2.27 and Cost � ([0,∞], ≥, 0,+) from
Example 2.37. There is a monoidal monotone 1 : Bool→ Cost, given by 1(false) B ∞
and 1(true) B 0.

Exercise 2.43.
1. Check that the map 1 : (B, ≤, true,∧) → ([0,∞], ≥, 0,+) presented above indeed

• is monotonic,

• satisfies condition (a) of Definition 2.41, and

• satisfies condition (b) of Definition 2.41.

2. Is 1 strict? ♦

Exercise 2.44. Let Bool and Cost be as above, and consider the following quasi-inverse

functions d , u : [0,∞] → B defined as follows:

d(x) B
{
false if x > 0

true if x � 0

u(x) B
{
false if x � ∞
true if x < ∞

1. Is d monotonic?

2. Does d satisfy conditions (a) and (b) of Definition 2.41?

3. Is d strict?

4. Is u monotonic?

5. Does u satisfy conditions (a) and (b) of Definition 2.41?

6. Is u strict? ♦

Exercise 2.45.
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1. Is (N, ≤, 1, ∗) a monoidal preorder, where ∗ is the usual multiplication of natural

numbers?

2. If not, why not? If so, does there exist a monoidal monotone (N, ≤, 0,+) → (N, ≤
, 1, ∗)? If not; why not? If so, find it.

3. Is (Z, ≤, ∗, 1) a monoidal preorder? ♦

2.3 Enrichment

In this section we will introduce V-categories, where V is a symmetric monoidal pre-

order. We will see that Bool-categories are preorders, and that Cost-categories are a

nice generalization of the notion of metric space.

2.3.1 V-categories

While V-categories can be defined even when V is not symmetric, i.e. just obeys con-

ditions (a)–(c) of Definition 2.2, certain things don’t work quite right. For example,

we will see later in Exercise 2.75 that the symmetry condition is necessary in order for

products of V-categories to exist. Anyway, here’s the definition.

Definition 2.46. Let V � (V, ≤, I , ⊗) be a symmetric monoidal preorder. A V-category
X consists of two constituents, satisfying two properties. To specify X,

(i) one specifies a set Ob(X), elements of which are called objects;
(ii) for every two objects x , y, one specifies an element X(x , y) ∈ V , called the hom-

object.2

The above constituents are required to satisfy two properties:

(a) for every object x ∈ Ob(X)we have I ≤ X(x , x), and
(b) for every three objects x , y , z ∈ Ob(X), we have X(x , y) ⊗ X(y , z) ≤ X(x , z).

We call V the base of the enrichment for X or say that X is enriched in V.

Example 2.47. As we shall see in the next subsection, from every preorder we can

construct a Bool-category, and vice versa. So, to get a feel for V-categories, let us

2
Theword “hom” is short for homomorphism and reflects the origins of this subject. Amore descriptive

name forX(x , y)might bemapping object, but we use “hom”mainly because it is an important jargonword

to know in the field.
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consider the preorder generated by the Hasse diagram:

t

s

q r

p

(2.48)

How does this correspond to a Bool-category X? Well, the objects of X are simply

the elements of the preorder, i.e. Ob(X) � {p , q , r, s , t}. Next, for every pair of objects

(x , y) we need an element of B � {false, true}: simply take true if x ≤ y, and false
if otherwise. So for example, since s ≤ t and t � s, we have X(s , t) � true and

X(t , s) � false. Recalling from Example 2.27 that the monoidal unit I of Bool is true,
it’s straightforward to check that this obeys both (a) and (b), sowe have aBool-category.

In general, it’s sometimes convenient to represent a V-category X with a square

matrix. The rows and columns of the matrix correspond to the objects of X, and the

(x , y)th entry is simply the hom-object X(x , y). So, for example, the above preorder in

Eq. (2.48) can be represented by the matrix

·≤· p q r s t
p true true true true true

q false true false true true

r false false true true true

s false false false true true

t false false false false true

2.3.2 Preorders as Bool-categories

Our colleague Peter Gates has called category theory “a primordial ooze,” because so

much of it can be defined in terms of other parts of it. There is nowhere to rightly call

the beginning, because that beginning can be defined in terms of something else. So

be it; this is part of the fun.

Theorem 2.49. There is a one-to-one correspondence between preorders and Bool-
categories.

Here we find ourselves in the ooze, because we are saying that preorders are the

same as Bool-categories, whereas Bool is itself a preorder. “So then Bool is like...

enriched in itself?” Yes, every preorder, including Bool, is enriched in Bool, as we will

now see.
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Proof of Theorem 2.49. Let’s check that we can construct a preorder from any Bool-
category. Since B � {false, true}, Definition 2.46 says a Bool-category consists of two

things:

(i) a set Ob(X), and
(ii) for every x , y ∈ Ob(X) an element X(x , y) ∈ B, i.e. either X(x , y) � true or

X(x , y) � false.
We will use these two things to begin forming a preorder whose elements are the

objects of X. So let’s call the preorder (X, ≤), and let X B Ob(X). For the ≤ relation,

let’s declare x ≤ y iff X(x , y) � true. We have the makings of a preorder, but for it to

work, the ≤ relation must be reflexive and transitive. Let’s see if we get these from the

properties guaranteed by Definition 2.46:

(a) for every element x ∈ X we have true ≤ X(x , x),
(b) for every three elements x , y , z ∈ X we have X(x , y) ∧ X(y , z) ≤ X(x , z).

For b ∈ Bool, if true ≤ b then b � true, so the first statement says X(x , x) � true,
which means x ≤ x. For the second statement, one can consult Eq. (2.28). Since

false ≤ b for all b ∈ B, the only way statement (b) has any force is if X(x , y) � true
and X(y , z) � true, in which case it forces X(x , z) � true. This condition exactly

translates as saying that x ≤ y and y ≤ z implies x ≤ z. Thus we have obtained

reflexivity and transitivity from the two axioms of Bool-categories.
In Example 2.47, we constructed a Bool-category from a preorder. We leave it to the

reader to generalize this example and show that the two constructions are inverses; see

Exercise 2.50. �

Exercise 2.50.
1. Start with a preorder (P, ≤), and use it to define a Bool-category as we did in

Example 2.47. In the proof of Theorem 2.49 we showed how to turn that Bool-
category back into a preorder. Show that doing so, you get the preorder you

started with.

2. Similarly, show that if you turn a Bool-category into a preorder using the above

proof, and then turn the preorder back into a Bool-category using your method,

you get the Bool-category you started with. ♦

We now discuss a beautiful application of the notion of enriched categories: metric

spaces.

2.3.3 Lawvere metric spaces

Metric spaces offer a precise way to describe spaces of points, each pair of which is

separated by some distance. Here is the usual definition:

Definition 2.51. A metric space (X, d) consists of:
(i) a set X, elements of which are called points, and
(ii) a function d : X × X → R≥0, where d(x , y) is called the distance between x and y.



60 CHAPTER 2. RESOURCES: MONOIDAL PREORDERS AND ENRICHMENT

These constituents must satisfy four properties:

(a) for every x ∈ X, we have d(x , x) � 0,

(b) for every x , y ∈ X, if d(x , y) � 0 then x � y,
(c) for every x , y ∈ X, we have d(x , y) � d(y , x), and
(d) for every x , y , z ∈ X, we have d(x , y) + d(y , z) ≥ d(x , z).

The fourth property is called the triangle inequality.
If we ask instead in (ii) for a function d : X ×X → [0,∞] � R≥0 ∪ {∞}, we call (X, d)

an extended metric space.

The triangle inequality says that when plotting a route from x to z, the distance is

always atmostwhat youget by choosing an intermediate point y andgoing x → y → z.

• •

•

x y

z

3

5

7.2

It can be invoked three different ways in the above picture: 3 + 5 ≥ 7.2, but also

5 + 7.2 ≥ 3 and 3 + 7.2 ≥ 5. Oh yeah, and 5 + 3 ≥ 7.2, 7.2 + 5 ≥ 3 and 7.2 + 3 ≥ 5.

The triangle inequality wonderfully captures something about distance, as does the

fact that d(x , x) � 0 for any x. However, the other two conditions are not quite as

general as we would like. Indeed, there are many examples of things that “should” be

metric spaces, but which do not satisfy conditions (b) or (c) of Definition 2.51.

For example, what if we take X to be places in your neighborhood, but instead of

measuring distance, you want d(x , y) to measure effort to get from x to y. Then if there

are any hills, the symmetry axiom, d(x , y) �? d(y , x), fails: it’s easier to get from x
downhill to y then to go from y uphill to x.

Another way to find a model that breaks the symmetry axiom is to imagine that

the elements of X are not points, but whole regions such as the US, Spain, and Boston.

Say that the distance from region A to region B is understood using the setup “I will

put you in an arbitrary part of A and you just have to get anywhere in B; what is the

distance in the worst-case scenario?” So d(US, Spain) is the distance from somewhere

in the western US to the western tip of Spain: you just have to get into Spain, but you

start in the worst possible part of the US for doing so.

Exercise 2.52. Which distance is bigger under the above description, d(Spain,US) or
d(US, Spain)? ♦

This notion of distance, which is strongly related to something called Hausdorff dis-
tance,3 will again satisfy the triangle inequality, but it violates the symmetry condition.

It also violates another condition, because d(Boston,US) � 0. No matter where you

3
The Hausdorff distance gives a metric on the set of all subsets U ⊆ X of a given metric space (X, d).
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are in Boston, the distance to the nearest point of the US is 0. On the other hand,

d(US, Boston) , 0.

Finally, one can imagine a use for distances that are not finite. In terms of my

effort, the distance from here to Pluto is∞, and it would not be any better if Pluto was

still a planet. Similarly, in terms of Hausdorff distance, discussed above, the distance

between two regions is often infinite, e.g. the distance between {r ∈ R | r < 0} and {0}
as subsets of (R, d) is infinite.

When we drop conditions (b) and (c) and allow for infinite distances, we get the fol-

lowing relaxed notion ofmetric space, first proposed by Lawvere. Recall the symmetric

monoidal preorder Cost � ([0,∞], ≥, 0,+) from Example 2.37.

Definition 2.53. A Lawvere metric space is a Cost-category.

This is a very compact definition, but it packs a punch. Let’swork outwhat itmeans,

by relating it to the usual definition of metric space. By Definition 2.46, a Cost-category
X consists of:

(i) a set Ob(X),
(ii) for every x , y ∈ Ob(X) an element X(x , y) ∈ [0,∞].

Here the set Ob(X) is playing the role of the set of points, andX(x , y) ∈ [0,∞] is playing
the role of distance, so let’s write a little translator:

X B Ob(X) d(x , y) B X(x , y).

The properties of a category enriched in Cost are:
(a) 0 ≥ d(x , x) for all x ∈ X, and

(b) d(x , y) + d(y , z) ≥ d(x , z) for all x , y , z ∈ X.

Since d(x , x) ∈ [0,∞], if 0 ≥ d(x , x) then d(x , x) � 0. So the first condition is equivalent

to the first condition from Definition 2.51, namely d(x , x) � 0. The second condition is

the triangle inequality.

Example 2.54. The set R of real numbers can be given a metric space structure, and

hence a Lawvere metric space structure. Namely d(x , y) B |y − x |, the absolute value
of the difference. So d(3, 7) � 4.

Exercise 2.55. Consider the symmetric monoidal preorder (R≥0 , ≥, 0,+), which is

almost the same as Cost, except it does not include ∞. How would you characterize

the difference between a Lawveremetric space and a (R≥0 , ≥, 0,+)-category in the sense

of Definition 2.46? ♦

One first defines

dL(U,V) B sup

u∈U
inf

v∈V
d(u , v),

and this is exactly the formula we intend above; the result will be a Lawvere metric space. However, if one

wants theHausdorff distance to define a (symmetric) metric, as in Definition 2.51, onemust take the above

formula and symmetrize it: d(U,V) B max(dL(U,V), dL(V,U)). We happen to see the unsymmetrized

notion as more interesting.
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Presenting metric spaces with weighted graphs Just as one can convert a Hasse

diagram into a preorder, one can convert any weighted graph—a graph whose edges

are labeled with numbers w ≥ 0—into a Lawvere metric space. In fact, we shall

consider these as graphs labelled with elements of [0,∞], and more precisely call them

Cost-weighted graphs.4

One might think of a Cost-weighted graph as describing a city with some one-way

roads (a two-way road is modeled as two one-way roads), each having some effort-to-

traverse, which for simplicity we just call length. For example, consider the following

weighted graphs:

A• B•

•
C

•
D

3

3

6

2

5X B

x•

•
y

z•3 4

3

4

�: Y (2.56)

Given a weighted graph, one forms a metric dX on its set X of vertices by setting d(p , q)
to be the length of the shortest path from p to q. For example, here is the the table of

distances for Y

d(↗) x y z
x 0 4 3

y 3 0 6

z 7 4 0

(2.57)

Exercise 2.58. Fill out the following table of distances in the weighted graph X from

Eq. (2.56)

d(↗) A B C D
A 0 ? ? ?

B 2 ? 5 ?

C ? ? ? ?

D ? ? ? ?

♦

Above we converted a weighted graph G, e.g. as shown in Eq. (2.56), into a table

of distances, but this takes a bit of thinking. There is a more direct construction for

taking G and getting a square matrix MG, whose rows and columns are indexed by the

vertices of G. To do so, set MG to be 0 along the diagonal, to be∞wherever an edge is

missing, and to be the edge weight if there is an edge.

4
This generalizes Hasse diagrams, which we could call Bool-weighted graphs—the edges of a Hasse

diagram are thought of as weighted with true; we simply ignore any edges that are weighted with false,
and neglect to even draw them!
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For example, the matrix associated to Y in Eq. (2.56) would be

MY B

↗ x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

(2.59)

As soon as you see how we did this, you’ll understand that it takes no thinking to turn

a weighted graph G into a matrix MG in this way. We will see later in Section 2.5.3

that the more difficult “distance matrices” dY , such as Eq. (2.57), can be obtained from

the easy graph matrices MY , such as Eq. (2.59), by repeating a certain sort of “matrix

multiplication.”

Exercise 2.60. Fill out the matrix MX associated to the graph X in Eq. (2.56):

MX �

↗ A B C D
A 0 ? ? ?

B 2 0 ∞ ?

C ? ? ? ?

D ? ? ? ?

♦

2.3.4 V-variations on preorders and metric spaces

We have told the story of Bool and Cost. But in Section 2.2.4 we gave examples of

many other monoidal preorders, and each one serves as the base of enrichment for a

kind of enriched category. Which of them are useful? Something only becomes useful

when someone finds a use for it. We will find uses for some and not others, though we

encourage readers to think aboutwhat it wouldmean to enrich in the variousmonoidal

categories discussed above; maybe they can find a use we have not explored.

Exercise 2.61. Recall the monoidal preorder NMY B (P, ≤, yes,min) from Exer-

cise 2.34. Interpret what a NMY-category is. ♦

In the next two exercises, we use V-weighted graphs to construct V-categories. This

is possible because we will use preorders that, like Bool and Cost, have joins.

Exercise 2.62. Let M be a set and let M B (P(M), ⊆,M,∩) be the monoidal preorder

whose elements are subsets of M.

Someone gives the following interpretation, “for any set M, imagine it as the set of

modes of transportation (e.g. car, boat, foot). Then an M-category X tells you all the

modes that will get you from a all the way to b, for any two points a , b ∈ Ob(X).”
1. Draw a graphwith four vertices and four or five edges, each labeledwith a subset

of M � {car, boat, foot}.
2. From this graph is it possible to construct an M-category, where the hom-object

from x to y is computed as follows: for each path p from x to y, take the

intersection of the sets labelling the edges in p. Then, take the union of the these
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sets over all paths p from x to y. Write out the corresponding four-by-four matrix

of hom-objects, and convince yourself that this is indeed anM-category.

3. Does the person’s interpretation look right, or is it subtly mistaken somehow? ♦

Exercise 2.63. Consider the monoidal preorderW B (N ∪ {∞}, ≤,∞,min).
1. Draw a small graph labeled by elements of N ∪ {∞}.
2. Write out the matrix whose rows and columns are indexed by the nodes in the

graph, and whose (x , y)th entry is given by the maximum over all paths p from x
to y of the minimum edge label in p.

3. Prove that this matrix is the matrix of hom-objects for a W-category. This will

give you a feel for howWworks.

4. Make up an interpretation, like that in Exercise 2.62, for how to imagine enrich-

ment in W. ♦

2.4 Constructions on V-categories

Now that we have a good intuition for what V-categories are, we give three examples

of what can be done with V-categories. The first (Section 2.4.1) is known as change of

base. This allows us to use a monoidal monotone f : V→W to constructW-categories

from V-categories. The second construction (Section 2.4.2), that of V-functors, allows

us to complete the analogy: a preorder is to a Bool-category as a monotone map is to

what? The third construction (Section 2.4.2) is known as a V-product, and gives us a

way of combining two V-categories.

2.4.1 Changing the base of enrichment

Any monoidal monotone V → W between symmetric monoidal preorders lets us

convert V-categories intoW-categories.

Construction 2.64. Let f : V→W be amonoidal monotone. Given a V-category C, one

forms the associatedW-category, say C f as follows.

(i) We take the same objects: Ob(C f ) B Ob(C).
(ii) For any c , d ∈ Ob(C), put C f (c , d) B f (C(c , d)).

This construction C f does indeed obey the definition of aW-category, as can be seen

by applyingDefinition 2.41 (ofmonoidalmonotone) andDefinition 2.46 (ofV-category):

(a) for every c ∈ C, we have

IW ≤ f (IV ) ( f is monoidal monotone)

≤ f (C(c , c)) (C is V-category)

� C f (c , c) (definition of C f )
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(b) for every c , d , e ∈ Ob(C)we have

C f (c , d) ⊗W C f (d , e) � f (C(c , d)) ⊗W f (C(d , e)) (definition of C f )

≤ f
(
C(c , d) ⊗V C(d , e)

)
( f is monoidal monotone)

≤ f (C(c , e)) (C is V-category)

� C f (c , e) (definition of C f )

Example 2.65. As an example, consider the function f : [0,∞] → {true, false} given
by

f (x) B
{
true if x � 0

false if x > 0

(2.66)

It is easy to check that f is monotonic and that f preserves the monoidal product

and monoidal unit; that is, it’s easy to show that f is a monoidal monotone. (Recall

Exercise 2.44.)

Thus f lets us convert Lawvere metric spaces into preorders.

Exercise 2.67. Recall the “regions of theworld”Lawveremetric space fromExercise 2.52

and the text above it. We just learned that, using themonoidalmonotone f in Eq. (2.66),

we can convert it to a preorder. Draw theHasse diagram for the preorder corresponding

to the regions: US, Spain, and Boston. How could you interpret this preorder relation?

♦

Exercise 2.68.
1. Find anothermonoidal monotone 1 : Cost→ Bool different from the one defined

in Eq. (2.66).

2. Using Construction 2.64, both your monoidal monotone 1 and the monoidal

monotone f in Eq. (2.66) can be used to convert a Lawvere metric space into a

preorder. Find a Lawvere metric space X on which they give different answers,

X f , X1 . ♦

2.4.2 Enriched functors

The notion of functor provides the most important type of relationship between cate-

gories.

Definition 2.69. LetX andYbeV-categories. AV-functor fromX toY, denoted F : X→ Y,

consists of one constituent:

(i) a function F : Ob(X) → Ob(Y)
subject to one constraint

(a) for all x1 , x2 ∈ Ob(X), one has X(x1 , x2) ≤ Y(F(x1), F(x2)).
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Example 2.70. For example, we have said several times—e.g. in Theorem 2.49—that pre-

orders areBool-categories, whereX(x1 , x2) � true is denoted x1 ≤ x2. Onewouldhope

that monotone maps between preorders would correspond exactly to Bool-functors,
and that’s true. A monotone map (X, ≤X) → (Y, ≤Y) is a function F : X → Y such that

for every x1 , x2 ∈ X, if x1 ≤X x2 then F(x1) ≤Y F(x2). In other words, we have

X(x1 , x2) ≤ Y(F(x1), F(x2)),

where the above ≤ takes place in the enriching category V � Bool; this is exactly the

condition from Definition 2.69.

Remark 2.71. In fact, we have what is called an equivalence of categories between the

category of preorders and the category of Bool-categories. In the next chapter we will

develop the ideas necessary to state what this means precisely (Remark 3.59).

Example 2.72. Lawveremetric spaces areCost-categories. ThedefinitionofCost-functor
should hopefully return a nice notion—a “friend”—from the theory of metric spaces,

and it does: it recovers the notion of Lipschitz function. A Lipschitz (or more precisely,

1-Lipschitz) function is one under which the distance between any pair of points

does not increase. That is, given Lawvere metric spaces (X, dX) and (Y, dY), a Cost-
functor between them is a function F : X → Y such that for every x1 , x2 ∈ X we have

dX(x1 , x2) ≥ dY(F(x1), F(x2)).

Exercise 2.73. The concepts of opposite, dagger, and skeleton (see Examples 1.58

and 1.72 and Remark 1.35) extend from preorders to V-categories. The opposite of a
V-category X is denoted Xop

and is defined by

(i) Ob(Xop) B Ob(X), and
(ii) for all x , y ∈ X, we have Xop(x , y) B X(y , x).

AV-categoryX is a daggerV-category if the identity function is aV-functor † : X→ Xop
.

And a skeletal V-category is one in which if I ≤ X(x , y) and I ≤ X(y , x), then x � y.
Recall that an extendedmetric space (X, d) is a Lawvere metric space with two extra

properties; see properties (b) and (c) in Definition 2.51.

1. Show that a skeletal dagger Cost-category is an extended metric space.

2. Use Exercise 1.73 to make sense of the following analogy: “preorders are to sets

as Lawvere metric spaces are to extended metric spaces.” ♦

2.4.3 Product V-categories

If V � (V, ≤, I , ⊗) is a symmetric monoidal preorder and X and Y are V-categories, then

we can define their V-product, which is a new V-category.
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Definition 2.74. Let X and Y be V-categories. Define their V-product, or simply product,
to be the V-category X × Y with

(i) Ob(X × Y) B Ob(X) ×Ob(Y),
(ii) (X × Y)

(
(x , y), (x′, y′)

)
B X(x , x′) ⊗ Y(y , y′),

for two objects (x , y) and (x′, y′) in Ob(X × Y).

Product V-categories are indeed V-categories (Definition 2.46); see Exercise 2.75.

Exercise 2.75. Let X × Y be the V-product of V-categories as in Definition 2.74.

1. Check that for every object (x , y) ∈ Ob(X × Y)we have I ≤ (X × Y)
(
(x , y), (x , y)

)
.

2. Check that for every three objects (x1 , y1), (x2 , y2), and (x3 , y3), we have

(X × Y)
(
(x1 , y1), (x2 , y2)

)
⊗ (X × Y)

(
(x2 , y2), (x3 , y3)

)
≤ (X × Y)

(
(x1 , y1), (x3 , y3)

)
.

3. We said at the start of Section 2.3.1 that the symmetry of V (condition (d) of

Definition 2.2) would be required here. Point out exactly where that condition is

used. ♦

When taking the product of two preorders (P, ≤P) × (Q , ≤Q), as first described in

Example 1.56, we say that (p1 , q1) ≤ (p2 , q2) iff both p1 ≤ p2 AND q1 ≤ q2; the AND is

the monoidal product ⊗ from of Bool. Thus the product of preorders is an example of

a Bool-product.

Example 2.76. Let X and Y be the Lawvere metric spaces (i.e. Cost-categories) defined
by the following weighted graphs:

•
A

•
B

•
C2 3

X B

•
q

•
p

5 8 �: Y

(2.77)

Their product is defined by taking the product of their sets of objects, so there are six

objects in X×Y. And the distance dX×Y((x , y), (x′, y′)) between any two points is given

by the sum dX(x , x′) + dY(y , y′).
Examine the following graph, and make sure you understand how easy it is to
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derive from the weighted graphs for X and Y in Eq. (2.77):

•
(A, p)

•
(B, p)

•
(C, p)

•
(A, q)

•
(B, q)

•
(C, q)

2 3

2 3

5 8 5 8 5 8X × Y �

Exercise 2.78. Consider R as a Lawvere metric space, i.e. as a Cost-category (see

Example 2.54). Form the Cost-product R × R. What is the distance from (5, 6) to
(−1, 4)? Hint: apply Definition 2.74; the answer is not

√
40. ♦

In terms of matrices, V-products are also quite straightforward. They generalize

what is known as the Kronecker product of matrices. The matrices for X and Y in

Eq. (2.77) are shown below

X A B C
A 0 2 5

B ∞ 0 3

C ∞ ∞ 0

Y p q
p 0 5

q 8 0

and their product is as follows:

X × Y (A, p) (B, p) (C, p) (A, q) (B, q) (C, q)
(A, p) 0 2 5 5 7 10

(B, p) ∞ 0 3 ∞ 5 8

(C, p) ∞ ∞ 0 ∞ ∞ 5

(A, q) 8 10 13 0 2 5

(B, q) ∞ 8 11 ∞ 0 3

(C, q) ∞ ∞ 8 ∞ ∞ 0

Wehave drawn the product matrix as a blockmatrix, where there is one block—shaped

like X—for every entry of Y. Make sure you can see each block as the X-matrix shifted

by an entry in Y. This comes directly from the formula from Definition 2.74 and the

fact that the monoidal product in Cost is +.

2.5 Computing presented V-categories with matrix
multiplication

In Section 2.3.3 we promised a straightforward way to construct the matrix representa-

tion of a Cost-category from a Cost-weighted graph. To do this, we use a generalized

matrix multiplication. We shall show that this works, not just for Cost, but also for

Bool, and many other monoidal preorders. The property required of the preorder is
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that of being a unital, commutative quantale. These are preorders with all joins, plus

one additional ingredient, beingmonoidal closed, which we define next, in Section 2.5.1.

The definition of a quantale will be given in Section 2.5.2.

2.5.1 Monoidal closed preorders

The definition of V-category makes sense for any symmetric monoidal preorder V. But

that does not mean that any base of enrichment V is as useful as any other. In this

section we define closed monoidal categories, which in particular enrich themselves!

“Before you can really enrich others, you should really enrich yourself.”

Definition 2.79. A symmetric monoidal preorder V � (V, ≤, I , ⊗) is called symmetric
monoidal closed (or just closed) if, for every two elements v , w ∈ V , there is an element

v ( w in V, called the hom-element, with the property

(a ⊗ v) ≤ w iff a ≤ (v ( w). (2.80)

for all a , v ,w ∈ V .

Remark 2.81. The term ‘closed’ refers to the fact that a hom-element can be constructed

for any two elements, so the preorder can be seen as closed under the operation of

“taking homs.” In later chapters we’ll meet the closely-related concepts of compact

closed categories (Definition 4.58) and cartesian closed categories (Section 7.2.1) that

make this idea more precise. See especially Exercise 7.11.

One can consider the hom-element v ( w as a kind of “single-use v-to-w converter.”

So Eq. (2.80) says that a and v are enough to get w if and only if a is enough to get a

single-use v-to-w converter.

Exercise 2.82. Condition Eq. (2.80) says precisely that there is aGalois connection in the

sense of Definition 1.95. Let’s prove this fact. In particular, we’ll prove that a monoidal

preorder is monoidal closed iff, given any v ∈ V , the map (− ⊗ v) : V → V given by

multiplying with v has a right adjoint. We write this right adjoint (v ( −) : V → V .

1. Using Definition 2.2, show that (− ⊗ v) is monotone.

2. Supposing that V is closed, show that for all v ,w ∈ V we have

(
(v ( w)⊗ v

)
≤ w.

3. Using 2., show that (v ( −) is monotone.

4. Conclude that a symmetric monoidal preorder is closed if and only if the mono-

tone map (− ⊗ v) has a right adjoint. ♦

Example 2.83. The monoidal preorder Cost � ([0,∞], ≥, 0,+) is monoidal closed. In-

deed, for any x , y ∈ [0,∞], define x ( y B max(0, y−x). Then, for any a , x , y ∈ [0,∞],
we have

a + x ≥ y iff a ≥ y − x iff max(0, a) ≥ max(0, y − x) iff a ≥ (x ( y)
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so( satisfies the condition of Eq. (2.80).

Note that we have not considered subtraction in Cost before; we can in fact use

monoidal closure to define subtraction in terms of the order and monoidal structure!

Exercise 2.84. Show that Bool � (B, ≤, true,∧) is monoidal closed. ♦

Example 2.85. Anon-example is (B, ≤, false,∨). Indeed, supposewe had a( operator

as in Definition 2.79. Note that false ≤ p ( q, for any p , q no matter what ( is,

because false is less than everything. But using a � false, p � true, and q � false,

we then get a contradiction: (a ∨ p) � q and yet a ≤ (p ( q).

Example 2.86. We started this chapter talking about resource theories. What does the

closed structure look like from that perspective? For example, in chemistry it would

say that for every twomaterial collections c , d one can form amaterial collection c ( d
with the property that for any a, one has

a + c → d if and only if a → (c ( d).

Or more down to earth, since we have the reaction 2H2O + 2Na→ 2NaOH + H2, we

must also have

2H2O→ (2Na ( (2NaOH + H2))

So from just two molecules of water, you can form a certain substance, and not many

substances fit the bill—our preorder Mat of chemical materials is not closed.

But it is not so far-fetched: this hypothetical new substance (2Na ( (2NaOH + H2))
is not really a substance, but a potential reaction: namely that of converting a sodium

to sodium-hydroxide-plus-hydrogen. Two molecules of water unlock that potential.

Proposition 2.87. Suppose V � (V, ≤, I , ⊗,() is a symmetric monoidal preorder that

is closed. Then

(a) For every v ∈ V , the monotone map − ⊗ v : (V, ≤) → (V, ≤) is left adjoint to

v ( − : (V, ≤) → (V, ≤).
(b) For any element v ∈ V and set of elements A ⊆ V , if the join

∨
a∈A a exists then

so does

∨
a∈A v ⊗ a and we have(

v ⊗
∨
a∈A

a

)
�

∨
a∈A

(v ⊗ a). (2.88)

(c) For any v , w ∈ V , we have v ⊗ (v ( w) ≤ w.

(d) For any v ∈ V , we have v � (I ( v).
(e) For any u , v , w ∈ V , we have (u ( v) ⊗ (v ( w) ≤ (u ( w).
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Proof. We go through the claims in order.

(a) The definition of (− ⊗ v) being left adjoint to (v ( −) is exactly the condition

Eq. (2.80); see Definition 1.95 and Exercise 2.82.

(b) This follows from (a), using the fact that left adjoints preserve joins (Proposi-

tion 1.111).

(c) This follows from (a), using the equivalent characterisation of Galois connection

in Proposition 1.107. More concretely, from reflexivity (v ( w) ≤ (v ( w), we

obtain (v ( w) ⊗ v ≤ w Eq. (2.80), and we are done by symmetry, which says

v ⊗ (v ( w) � (v ( w) ⊗ v.
(d) Since v ⊗ I � v ≤ v, Eq. (2.80) says v ≤ (I ( v). For the other direction, we have

(I ( v) � I ⊗ (I ( v) ≤ v by (c).

(e) To obtain this inequality, we just need u ⊗ (u ( v) ⊗ (v ( w) ≤ w. But this

follows by two applications of (c). �

One might read (c) as saying “if I have a v and a single-use v-to-w converter, I can

have a w.” One might read (d) as saying “having a v is the same as having a single-use

nothing-to-v converter.” And onemight read (e) as saying “if I have a single-use u-to-v
converter and a single-use v-to-w converter, I can get a single-use u-to-w converter.

Remark 2.89. We can consider V to be enriched in itself. That is, for every v , w ∈ Ob(V),
we can define V(v , w) B (v ( w) ∈ V. For this to really be an enrichment, we just need

to check the two conditions of Definition 2.46. The first condition I ≤ X(x , x) � (x ( x)
is satisfied because I ⊗ x ≤ x. The second condition is satisfied by Proposition 2.87(e).

2.5.2 Quantales

To perform matrix multiplication over a monoidal preorder, we need one more thing:

joins. These were first defined in Definition 1.81.

Definition 2.90. A unital commutative quantale is a symmetricmonoidal closed preorder

V � (V, ≤, I , ⊗,() that has all joins: ∨ A exists for every A ⊆ V . In particular, we often

denote the empty join by 0 B
∨�.

Whenever we speak of quantales in this book, we mean unital commutative quan-

tales. We will try to remind the reader of that. There are also very interesting applica-

tions of noncommutative quantales; see Section 2.6.

Example 2.91. In Example 2.83, we saw that Cost is monoidal closed. To check whether

Cost is a quantale, we take an arbitrary set of elements A ⊆ [0,∞] and ask if it has a

join

∨
A. To be a join, it needs to satisfy two properties:

a. a ≥ ∨
A for all a ∈ A, and

b. if b ∈ [0,∞] is any element such that a ≥ b for all a ∈ A, then

∨
A ≥ b.

In fact we can define such a join: it is typically called the infimum, or greatest lower
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bound, of A.
5
For example, if A � {2, 3} then ∨

A � 2. We have joins for infinite sets

too: if B � {2.5, 2.05, 2.005, . . .}, its infimum is 2. Finally, in order to say that ([0,∞], ≥)
has all joins, we need a join to exist for the empty set A � � too. The first condition

becomes vacuous—there are no a’s in A—but the second condition says that for any

b ∈ [0,∞]we have

∨� ≥ b; this means

∨� � ∞.

Thus indeed ([0,∞], ≥) has all joins, so Cost is a quantale.

Exercise 2.92.
1. What is

∨�, which we generally denote 0, in the case

a. V � Bool � (B, ≤, true,∧)?
b. V � Cost � ([0,∞], ≥, 0,+)?

2. What is the join x ∨ y in the case

a. V � Bool, and x , y ∈ B are booleans?

b. V � Cost, and x , y ∈ [0,∞] are distances? ♦

Exercise 2.93. Show that Bool � (B, ≤, true,∧) is a quantale. ♦

Exercise 2.94. Let S be a set and recall the power set monoidal preorder (P(S), ⊆, S,∩)
from Exercise 2.35. Is it a quantale? ♦

Remark 2.95. One can personify the notion of unital, commutative quantale as a kind

of navigator. A navigator is someone who understands “getting from one place to an-

other.” Different navigators may care about or understand different aspects—whether

one can get from A to B, how much time it will take, what modes of travel will work,

etc.—but they certainly have some commonalities. Most importantly, a navigator needs

to be able to read a map: given routes A to B and B to C, they understand how to get

a route A to C. And they know how to search over the space of way-points to get

from A to C. These will correspond to the monoidal product and the join operations,

respectively.

Proposition 2.96. Let P � (P, ≤) be a preorder. It has all joins iff it has all meets.

Proof. The joins (resp. meets) in P are the meets (resp. joins) in Pop
, so the two claims

are dual: it suffices to show that if P has all joins then it has all meets.

Suppose P has all joins and suppose that A ⊆ P is a subset for which we want

the meet. Consider the set MA B {p ∈ P | p ≤ a for all a ∈ A} of elements below

everything in A. Let mA B
∨

p∈MA
p be their join. We claim that mA is a meet for A.

We first need to know that for any a ∈ A we have mA ≤ a, but this is by definition of

join: since all p ∈ MA satisfy p ≤ a, so does their join mA ≤ a. We second need to know

that for any m′ ∈ P with m′ ≤ a for all a ∈ A, we have m′ ≤ m. But every such m′ is
actually an element of MA and m is their join, so m′ ≤ m. This completes the proof. �

5
Here, by the infimum of a subset A ⊆ [0,∞], we mean infimum in the usual order on [0,∞]: the

largest number that is ≤ everything in A. For example, the infimum of {3.1, 3.01, 3.001, . . .} is 3. But note

that this is the supremum in the reversed, ≥, order of Cost.
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In particular, a quantale has all meets and all joins, even though we only define it to

have all joins.

Remark 2.97. The notion of Hausdorff distance can be generalized, allowing the role of

Cost to be taken by any quantale V. If X is a V-category with objects X, and U ⊆ X
and V ⊆ X, we can generalize the usual Hausdorff distance, on the left below, to the

formula on the right:

d(U,V) B sup

u∈U
inf

v∈V
d(u , v) X(U,V) B

∧
u∈U

∨
v∈V

X(u , v).

For example, if V � Bool, the Hausdorff distance between sub-preorders U and V
answers the question “can I get into V from every u ∈ U,” i.e. ∀u∈U .∃v∈V . u ≤ v. Or

for another example, use V � P(M) with its interpretation as modes of transportation,

as in Exercise 2.62. Then the Hausdorff distance d(U,V) ∈ P(M) tells us those modes

of transportation that will get us into V from every point in U.

Proposition 2.98. Suppose V � (V, ≤, I , ⊗) is any symmetric monoidal preorder that

has all joins. Then V is closed—i.e. it has a ( operation and hence is a quantale—if

and only if ⊗ distributes over joins; i.e. if Eq. (2.88) holds for all v ∈ V and A ⊆ V .

Proof. We showed one direction in Proposition 2.87(b): if V is monoidal closed then

Eq. (2.88) holds. We need to show that Eq. (2.88) holds then − ⊗ v : V → V has a right

adjoint v ( −. This is just the adjoint functor theorem, Theorem 1.115. It says we can

define v ( w to be

v ( w B
∨

{a∈V |a⊗v≤w}
a. �

2.5.3 Matrix multiplication in a quantale

AquantaleV � (V, ≤, I , ⊗,(), as defined inDefinition 2.79, provideswhat is necessary

to perform matrix multiplication.6 The usual formula for matrix multiplication is:

(M ∗ N)(i , k) �
∑

j

M(i , j) ∗ N( j, k). (2.99)

We will get a formula where joins stand in for the sum operation

∑
, and ⊗ stands in

for the product operation ∗. Recall our convention of writing 0 B
∨�.

Definition 2.100. Let V � (V, ≤, ⊗, I) be a quantale. Given sets X and Y, a matrix with
entries in V, or simply a V-matrix, is a function M : X × Y → V . For any x ∈ X and

y ∈ Y, we call M(x , y) the (x , y)-entry.

6
This works for noncommutative quantales as well.
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Here is how you multiply V-matrices M : X × Y → V and N : Y × Z → V . Their

product is defined to be the matrix (M ∗ N) : X × Z → V , whose entries are given by

the formula

(M ∗ N)(x , z) B
∨
y∈Y

M(x , y) ⊗ N(y , z). (2.101)

Note how similar this is to Eq. (2.99).

Example 2.102. Let V � Bool. Here is an example of matrix multiplication M ∗N . Here

X � {1, 2, 3}, Y � {1, 2}, and Z � {1, 2, 3}, matrices M : X × Y → B and N : Y × Z→ B

are shown to the left below, and their product is shown to the right:

©«
false false

false true

true true

ª®®¬ ∗
(
true true false

true false true

)
�

©«
false false false

true false true

true true true

ª®®¬
The identity V-matrix on a set X is IX : X × X → V given by

IX(x , y) B
{

I if x � y

0 if x , y.

Exercise 2.103. Write down the 2×2-identitymatrix for each of the quantales (N, ≤, 1, ∗),
Bool � (B, ≤, true,∧), and Cost � ([0,∞], ≥, 0,+). ♦

Exercise 2.104. Let V � (V, ≤, I , ⊗,() be a quantale. Use Eq. (2.101) and Proposi-

tion 2.87 to prove the following.

1. Prove the identity law: for any sets X and Y and V-matrix M : X × Y → V , one

has IX ∗M � M.

2. Prove the associative law: for any matrices M : W × X → V , N : X × Y → V , and

P : Y × Z→ V , one has (M ∗ N) ∗ P � M ∗ (N ∗ P). ♦

Recall the weighted graph Y from Eq. (2.56). One can read off the associated matrix

MY , and one can calculate the associated metric dY :

x•

•
y

z•3 4

3

4

Y B

MY x y z
x 0 4 3

y 3 0 ∞
z ∞ 4 0

dY x y z
x 0 4 3

y 3 0 6

z 7 4 0

Here we fully explain how to compute dY using only MY .

Thematrix MY can be thought of as recording the length of paths that traverse either

0 or 1 edges: the diagonals being 0 mean we can get from x to x without traversing any
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edges. When we can get from x to y in one edge we record its length in MY , otherwise

we use∞.

When we multiply MY by itself using the formula Eq. (2.101), the result M2

Y tells us

the length of the shortest path traversing 2 edges or fewer. Similarly M3

Y tells us about

the shortest path traversing 3 edges or fewer:

M2

Y �

↗ x y z
x 0 4 3

y 3 0 6

z 7 4 0

M3

Y �

↗ x y z
x 0 4 3

y 3 0 6

z 7 4 0

One sees that the powers stabilize: M2

Y � M3

Y ; as soon as that happens one has the

matrix of distances, dY . Indeed Mn
Y records the lengths of the shortest path traverse n

edges or fewer, and the powers will always stabilize if the set of vertices is finite, since

the shortest path from one vertex to another will never visit a given vertex more than

once.7

Exercise 2.105. Recall from Exercise 2.60 the matrix MX , for X as in Eq. (2.56). Cal-

culate M2

X , M3

X , and M4

X . Check that M4

X is what you got for the distance matrix in

Exercise 2.58. ♦

This procedure gives an algorithm for computing the V-category presented by any

V-weighted graph using matrix multiplication.

2.6 Summary and further reading

In this chapterwe thought of elements of preorders as describing resources, with the or-

der detailing whether one resource could be obtained from another. This naturally led

to the question of how to describe what could be built from a pair of resources, which

led us to consider monoid structures on preorders. More abstractly, these monoidal

preorders were seen to be examples of enriched categories, or V-categories, over the

symmetric monoidal preorder Bool. Changing Bool to the symmetric monoidal pre-

order Cost, we arrived upon Lawvere metric spaces, a slight generalization of the

usual notion of metric space. In terms of resources, Cost-categories tell us the cost of

obtaining one resource from another.

At this point, we sought to get a better feel for V-categories in two ways. First, we

introduced various important constructions: base change, functors, products. Second,

we looked at how to present V-categories using labelled graphs; here, perhaps surpris-

ingly, we saw thatmatrixmultiplication gives an algorithm to compute the hom-objects

from a labelled graph.

Resource theories are discussed in much more detail in [CFS16; Fri17]. The authors

provide many more examples of resource theories in science, including in thermody-

7
The method works even in the infinite case: one takes the infimum of all powers Mn

Y . The result

always defines a Lawvere metric space.
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namics, Shannon’s theory of communication channels, and quantum entanglement.

They also discuss more of the numerical theory than we did, including calculating the

asymptotic rate of conversion from one resource into another.

Enrichment is a fundamental notion in category theory, and we will we return to it

in Chapter 4, generalizing the definition so that categories, rather thanmere preorders,

can serve as bases of enrichment. In this more general setting we can still perform

the constructions we introduced in Section 2.4—base change, functors, products—and

many others; the authoratitive, but by no means easy, reference on this is the book by

Kelly [Kel05].

While preorders were familiar before category theory came along, Lawvere metric

spaces are a beautiful generalization of the previous notion of (symmetric) metric

space, that is due to, well, Lawvere. A deeper exploration than the taste we gave

here can be found in his classic paper [Law73], where he also discusses ideas like

Cauchy completeness in category-theoretic terms, and which hence generalize to other

categorical settings.

We observed that while any symmetric monoidal preorder can serve as a base

for enrichment, certain preorders—quantales—are better than others. Quantales are

well known for links to other parts of mathematics too. The word quantale is in fact a

portmanteau of ‘quantum locale’, where quantumrefers to quantumphysics, and locale

is a fundamental structure in topology. For a book-length introduction of quantales and

their applications, one might check [Ros90]. The notion of cartesian closed categories,

later generalized to monoidal closed categories, is due to Ronnie Brown [Bro61].

Note that while we have only considered commutative quantales, the noncommu-

tative variety also arise naturally. For example, the power set of any monoid forms

a quantale that is commutative iff the monoid is. Another example is the set of all

binary relations on a set X, where multiplication is relational composition; this is

non-commutative. Such noncommutative quantales have application to concurrency

theory, and in particular process semantics and automata; see [AV93] for details.
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