18.S34 (FALL 2007)

LIMIT PROBLEMS

1. Let a and b be positive real numbers. Prove that

$$
\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{1 / n}
$$

equals the larger of a and b. What happens when $a=b$?
2. Show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log (n)\right)$ exists and lies between $\frac{1}{2}$ and 1 .
Note. This number, known as Euler's constant and denoted γ, is probably the third most important constant in the theory of complex variables, after π and e. Numerically we have

$$
\gamma=0.57721566490153286060651209008240243104215933593992 \cdots
$$

It is a famous unsolved problem to decide whether γ is irrational.
3. (47P) If $\left(a_{n}\right)$ is a sequence of numbers such that, for $n \geq 1$,

$$
\left(2-a_{n}\right) a_{n+1}=1
$$

prove that $\lim _{n \rightarrow \infty} a_{n}$ exists and equals 1 .
4. Let K be a positive real number. Take an arbitrary positive real number x_{0} and form the sequence

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{K}{x_{n}}\right) .
$$

Show that $\lim _{n \rightarrow \infty} x_{n}=\sqrt{K}$. (REMARK. this is how most calculators determine \sqrt{K}.)
5. (70P) Given a sequence $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left(x_{n}-x_{n-2}\right)=0$, prove that

$$
\lim _{n \rightarrow \infty} \frac{x_{n}-x_{n-1}}{n}=0
$$

6. Let $x_{n+1}=x_{n}^{2}-6 x_{n}+10$. For what values of x_{0} is $\left\{x_{n}\right\}$ convergent, and how does the value of the limit depend on x_{0} ?
7. (90P) Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n}-\sqrt[3]{m}$, ($n, m=0,1,2, \ldots$)? Justify your answer.
8. Let $x_{0}=1$ and $x_{n+1}=x_{n}+10^{-10^{x_{n}}}$. Does $\lim _{n \rightarrow \infty} x_{n}$ exist? Explain.
9. (00P) Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin (x) \sin \left(x^{2}\right) d x
$$

converges.
10. Let $x>0$. Define $a_{1}=x$ and $a_{n+1}=x^{a_{n}}$ for $n \geq 1$. For which x does $\lim _{n \rightarrow \infty} a_{n}$ exist (and is finite)?

PART II

Limits. Two useful techniques are:
(a) L'Hôpital's rule. If $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)=0$, then

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)},
$$

provided the derivatives in question exist. Some limits can be converted to this form by first taking logarithms, or by substituting $1 / x$ for x, etc.
(b) If $f(x)$ is reasonably well-behaved (e.g., continuous) on the closed interval $[a, b]$, then

$$
\lim \sum_{i=1}^{n} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)=\int_{a}^{b} f(x) d x
$$

where the limit is over any sequence of "partitions of $[a, b]$ " $a=x_{0}<x_{1}<$ $\cdots<x_{n}=b$ such that the maximum value of $x_{i}-x_{i-1}$ approaches 0 . In particular, taking $a=0, b=1, x_{i}=i / n$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f(i / n)=\int_{0}^{1} f(x) d x
$$

Sometimes a limit of products can be converted to this form by taking logarithms.

The next problems are all from the Putnam Exam.
11. Let $a>0, a \neq 1$. Find

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{x} \frac{a^{x}-1}{a-1}\right)^{1 / x}
$$

12. Find

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n^{4}} \prod_{i=1}^{2 n}\left(n^{2}+i^{2}\right)^{1 / n}\right]
$$

13. Let $0<a<b$. Evaluate

$$
\lim _{t \rightarrow 0}\left[\int_{0}^{1}(b x+a(1-x))^{t} d x\right]^{1 / t}
$$

14. Evaluate

$$
\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x}(1+\sin (2 t))^{1 / t} d t
$$

15. Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{j=1}^{n^{2}} \frac{n}{n^{2}+j^{2}}
$$

16. Evaluate

$$
\prod_{n=2}^{\infty} \frac{n^{3}-1}{n^{3}+1}
$$

17. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(\left\lfloor\frac{2 n}{k}\right\rfloor-2\left\lfloor\frac{n}{k}\right\rfloor\right) .
$$

Express your answer in the form $\log (a)-b$, where a and b are positive integers.
18. Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\cdots}}}
$$

Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c, d are integers.
19. Assume that $\left(a_{n}\right)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_{n} / n=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2 a_{n}$ for $i=1,2, \ldots, n-1$?
20. Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

21. Let k be an integer greater than 1 . Suppose $a_{0}>0$, and define

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}}
$$

for $n>0$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}} .
$$

MIT OpenCourseWare
https://ocw.mit.edu/

18.A34 Mathematical Problem Solving (Putnam Seminar)

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

