18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS

Note: We use the notation $\lfloor x\rfloor$ for the greatest integer $\leq x$, even if the original source used the older notation $[x]$.

1. (48P) If n is a positive integer, prove that

$$
\lfloor\sqrt{n}+\sqrt{n+1}\rfloor=\lfloor\sqrt{4 n+2}\rfloor .
$$

2. (a) Let p denote a prime number, and let m be any positive integer. Show that the exponent of the highest power of p which divides m ! is

$$
\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\cdots+\left\lfloor\frac{m}{p^{s}}\right\rfloor,
$$

where $p^{s+1}>m$.
(b) In how many zeros does the number 1000 ! end, when written in base 10 ?
3. (a) Prove that the exponent of the highest power of p which divides $\binom{n}{m}$ is equal to the number of carries that occur when n and $m-n$ are added in base p (Kummer's theorem).
(b) For $n>1$ a composite integer, prove that not all of

$$
\binom{n}{1}, \ldots,\binom{n}{n-1}
$$

can be divisible by n.
4. Prove that for any positive integers i, j, k,

$$
\frac{(3 i)!(3 j)!(3 k)!}{i!j!k!(i+j)!(j+k)!(k+i)!}
$$

is an integer.
5. Prove that for any integers $n_{1}, \ldots n_{k}$, the product

$$
\prod_{1 \leq i<j \leq k} \frac{n_{j}-n_{i}}{j-i}
$$

is an integer.
6. (68IMO) For every natural number n, evaluate the sum

$$
\sum_{k=0}^{\infty}\left\lfloor\frac{n+2^{k}}{2^{k+1}}\right\rfloor=\left\lfloor\frac{n+1}{2}\right\rfloor+\left\lfloor\frac{n+2}{4}\right\rfloor+\cdots+\left\lfloor\frac{n+2^{k}}{2^{k+1}}\right\rfloor+\cdots
$$

7. A sequence of real numbers is defined by the nonlinear first order recurrence

$$
u_{n+1}=u_{n}\left(u_{n}^{2}-3\right)
$$

(a) If $u_{0}=5 / 2$, give a simple formula for u_{n}.
(b) If $u_{0}=4$, how many digits (in base ten) does $\left\lfloor u_{10}\right\rfloor$ have?
8. Define a sequence $a_{1}<a_{2}<\cdots$ of positive integers as follows. Pick $a_{1}=1$. Once a_{1}, \ldots, a_{n} have been chosen, let a_{n+1} be the least positive integer not already chosen and not of the form $a_{i}+i$ for $1 \leq i \leq n$. Thus $a_{1}+1=2$ is not allowed, so $a_{2}=3$. Now $a_{2}+2=5$ is also not allowed, so $a_{3}=4$. Then $a_{3}+3=7$ is not allowed, so $a_{4}=6$, etc. The sequence begins:

$$
1,3,4,6,8,9,11,12,14,16,17,19, \ldots
$$

Find a simple formula for a_{n}. Your formula should enable you, for instance, to compute $a_{1,000,000}$.
9. (a) (Problem A6, 93P; no contestant solved it.) The infinite sequence of 2 's and 3 's
$2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2, \ldots$
has the property that, if one forms a second sequence that records the number of 3 's between successive 2's, the result is identical to the first sequence. Show that there exists a real number r such that, for any n, the nth term of the sequence is 2 if and only if $n=1+\lfloor r m\rfloor$ for some nonnegative integer m.
(b) (similar in flavor to (a), though not involving the greatest integer function) Let a_{1}, a_{2}, \ldots be the sequence

$$
1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9, \ldots
$$

of integers a_{n} defined as follows: $a_{1}=1, a_{1} \leq a_{2} \leq a_{3} \leq \cdots$, and a_{n} is the number of n 's appearing in the sequence. Find real numbers $\alpha, c>0$ such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n^{\alpha}}=c .
$$

10. (Problem B6, 95P; five of the top 204 contestants received at least 9 points (out of 10), and no one received $3-8$ points.) For a positive real number α, define

$$
S(\alpha)=\{\lfloor n \alpha\rfloor: n=1,2,3, \ldots\}
$$

Prove that $\{1,2,3, \ldots\}$ cannot be expressed as the disjoint union of three sets $S(\alpha), S(\beta)$, and $S(\gamma)$.
11. Let m be a positive integer and k any integer. Define a sequence a_{m}, a_{m+1}, \ldots as follows:

$$
\begin{aligned}
a_{m} & =k \\
a_{n+1} & =\left\lfloor\frac{n+2}{n} a_{n}\right\rfloor, \quad n \geq m .
\end{aligned}
$$

Show that there exists a positive integer N and polynomials $P_{0}(n), P_{1}(n)$, $\ldots, P_{N-1}(n)$ such that for all $0 \leq i \leq N-1$ and all integers t for which $t N+i \geq m$, we have

$$
a_{t N+i}=P_{i}(t) .
$$

12. (Problem B1, 97P; 171 of the top 205 contestants received 10 points, and 14 others received $8-9$ points.) Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$
F_{n}=\sum_{m=1}^{6 n-1} \min \left(\left\{\frac{m}{6 n}\right\},\left\{\frac{m}{3 n}\right\}\right)
$$

(Here $\min (a, b)$ denotes the minimum of a and b.)
13. (Problem B4, 98P; 73 of the top 199 contestants received at least 8 points.) Find necessary and sufficient conditions on positive integers m and n so that

$$
\sum_{i=0}^{m n-1}(-1)^{\lfloor i / m\rfloor+\lfloor i / n\rfloor}=0 .
$$

14. (Problem B3, 01P; 92 of the top 200 contestants received at least 8 points.) For any positive integer n, let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

15. (Problem B3, 03P; 152 of the top 201 contestants received at least 8 points.) Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}
$$

(Here lcm denotes the least common multiple.)
16. Define $a_{1}=1$ and

$$
a_{n+1}=\left\lfloor\sqrt{2 a_{n}\left(a_{n}+1\right)}\right\rfloor, \quad n \geq 1
$$

Thus $\left(a_{1}, \ldots, a_{10}\right)=(1,2,3,4,6,9,13,19,27,38)$. Show that $a_{2 n+1}-$ $a_{2 n}=2^{n-1}$, and find a simple description of $a_{2 n+1}-2 a_{2 n-1}$.
17. Prove that for all positive integers m, n,

$$
\operatorname{gcd}(m, n)=m+n-m n+2 \sum_{k=0}^{m-1}\left\lfloor\frac{k n}{m}\right\rfloor .
$$

18. Let a, b, c, d be real numbers such that $\lfloor n a\rfloor+\lfloor n b\rfloor=\lfloor n c\rfloor+\lfloor n d\rfloor$ for all positive integers n. Prove that at least one of $a+b, a-c, a-d$ is an integer.
19. Let p be a prime congruent to 1 modulo 4 . Prove that

$$
\sum_{i=1}^{(p-1) / 4}\lfloor\sqrt{i p}\rfloor=\frac{p^{2}-1}{12}
$$

20. Which positive integers can be written in the form $n+\left\lfloor\sqrt{n}+\frac{1}{2}\right\rfloor$ for some positive integer n ?
21. For n a positive integer, let x_{n} be the last digit in the decimal representation of $\left\lfloor 2^{n / 2}\right\rfloor$. Is the sequence x_{1}, x_{2}, \ldots periodic?

MIT OpenCourseWare
https://ocw.mit.edu/

18.A34 Mathematical Problem Solving (Putnam Seminar)

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

