18.A34 PROBLEMS \#1

Problems are marked by the following difficulty ratings.
[1] Easy. Most students should be able to solve it.
[2] Somewhat difficult or tricky. Many students should be able to solve it.
[3] Difficult. Only a few students should be able to solve it.
[4] Horrendously difficult. We don't really expect anyone to solve it, but those who like a challenge might want to give it a try.
[5] Unsolved.
Further gradations are indicated by + and - . Thus [1-] denotes an utterly trivial problem, and [5-] denotes an unsolved problem that has received little attention and may not be too difficult. A few students may be capable of solving a [3-] problem, while almost none could solve a [3] in a reasonable period of time. Of course these ratings are subjective, so you shouldn't take them too seriously.

1. [1] A single elimination tennis tournament is held among 215 players. A player is eliminated as soon as (s)he loses a match. Thus on the first round there are 107 matches and one player receives a bye (waits until the next round). On the second round there are 54 matches with no byes, etc. How many matches are played in all? What if there are $10{ }^{100}$ players?
2. (a) [1] It's easy to see that a cylinder of cheese can be cut into eight identical pieces with four straight cuts.

Can this be done with only three straight cuts?
(b) $[2+]$ What about a torus (doughnut)? What is the most number of pieces into which a solid torus can be cut by three straight cuts, or more generally by n straight cuts (without rearranging the pieces)?
(c) [3-] What is the most number of pieces into which a solid torus can be cut by three straight cuts, if one is allowed to rearrange the pieces after each cut? So far as I know, the answer is not known for $n \geq 4$ cuts.
3. [2] Can a cube of cheese three inches on a side be cut into 27 one-inch cubes with five straight cuts? What if one can move the pieces prior to cutting?
4. (a) [1] In how many zeros does 10000 ! end?
(b) [3] What is the last nonzero digit of 10000!? (No fair using a computer to actually calculate 10000 !.)
5. [1] In this problem, "knights" always tell the truth and "knaves" always lie. In (a)-(c), all persons are either knights or knaves.
(a) There are two persons, A and $B . A$ says, "At least one of us is a knave." What are A and B ?
(b) A says, "Either I am a knave or B is a knight." What are A and B ?
(c) Now we have three persons, A, B, and $C . A$ says, "All of us are knaves." B says, "Exactly one of us is a knight." What are A, B, and C ?
(d) Now we have a third type of person, called "normal," who sometimes lies and sometimes tells the truth. A says, "I am normal." B says, "That is true." C says, "I am not normal." Exactly one of A, B, C is a knight, one is a knave, and one is normal. What are A, B, and C ?
6. [1] Without using calculus, find the minimum value of $x+\frac{1}{x}$ for $x>0$. What about $x+\frac{3}{x}$?
7. [3] Let n and k be nonnegative integers, with $n \geq k$. The binomial coefficient $\binom{n}{k}$ is defined by $\binom{n}{k}=n!/ k!(n-k)$!. (Recall that $0!=1$. If $n<k$, then it is convenient to define $\binom{n}{k}=0$.)
(a) For what values of n and k is $\binom{n}{k}$ odd? Find as simple and elegant a criterion as possible.
(b) More generally, given a prime p, find a simple and elegant description of the largest power of p dividing $\binom{n}{k}$.
8. [3] (a) Let P be a convex polygon in the plane with a prime number p of sides, all angles equal, and all sides of rational length. Show that P is regular (i.e., all sides also have equal length).
(b) (1990 Olympiad) Show that there exists an equiangular polygon with side lengths $1^{2}, 2^{2}, \ldots, 1990^{2}$ (in some order).
9. [2] What positive integers can be expressed as the sum of two or more consecutive positive integers? (The first three are $3=1+2,5=2+3$, $6=1+2+3$.)
10. [2] (a) Find the maximum value of $x^{1 / x}$ for $x>0$.
(b) Without doing any numerical calculations, decide which is bigger, π^{e} or e^{π}.
11. [3] Does there exist an infinite sequence $a_{0} a_{1} a_{2} \cdots$ of 1 's, 2 's, and 3 's, such that no two consecutive blocks are identical? (In other words, for no $1 \leq i<j$ do we have $a_{i}=a_{j}, a_{i+1}=a_{j+1}, \ldots, a_{j-1}=a_{2 j-i-1}$.) For instance, if we begin our sequence with 1213121 , then we're stuck.
12. [2] A lattice point in the plane is a point with integer coordinates. For instance, $(3,5)$ and $(0,-2)$ are lattice points, but $(3 / 2,1)$ and $(\sqrt{2}, \sqrt{2})$ are not. Show that no three lattice points in the plane can be the vertices of an equilateral triangle. What about in three dimensions?
13. [3.5] True or false? Let n be a positive integer. Then

$$
\left\lceil\frac{2}{2^{1 / n}-1}\right\rceil=\left\lfloor\frac{2 n}{\log 2}\right\rfloor .
$$

MIT OpenCourseWare
https://ocw.mit.edu/

18.A34 Mathematical Problem Solving (Putnam Seminar)

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

