
PROBLEMS ON PROBABILITY 

1. Three closed boxes lie on a table. One box (you don’t know which) contains a $1000 
bill. The others are empty. After paying an entry fee, you play the following game 
with the owner of the boxes: you point to a box but do not open it; the owner then 
opens one of the two remaining boxes and shows you that it is empty; you may now 
open either the box you first pointed to or else the other unopened box, but not both. 
If you find the $1000, you get to keep it. Does it make any difference which box you 
choose? What is a fair entry fee for this game? 

2. You are dealt two cards face down from a shuffled deck of 8 cards consisting of the 
four queens and four kings from a standard bridge deck. The dealer looks at both of 
your two cards (without showing them to you) and tells you (truthfully) that at least 
one card is a queen. What is the probability that you have been given two queens? 
What is this probability if the dealer tells you instead that at least one card is a red 
queen? What is this probability if the dealer tells you instead that at least one card 
(or exactly one card) is the queen of hearts? 

3. An unfair coin (probability p of showing heads) is tossed n times. What is the proba-
bility that the number of heads will be even? 

4. Two persons agreed to meet in a definite place between noon and one o’clock. If either 
person arrives while the other is not present, he or she will wait for up to 15 minutes. 
Calculate the probability that the meeting will occur, assuming that the arrival times 
are independent and uniformly distributed between noon and one o’clock. 

5. Real numbers are chosen at random from the interval [0, 1]. If after choosing the nth 
number the sum of the numbers so chosen first exceeds 1, show that the expected or 
average value for n is e. 

6. Let α and β be given positive real numbers with α < β. If two points are selected 
at random from a straight line segment of length β, what is the probability that the 
distance between them is at least α? 

7. Two real numbers x and y are chosen at random in the interval (0, 1) with respect to 
the uniform distribution. What is the probability that the closest integer to x/y is 
even? Express the answer in the form r + sπ, where r and s are rational numbers. 

8. Four points are chosen at random on the surface of a sphere. What is the probability 
that the center of the sphere lies inside the tetrahedron whose vertices are at the four 
points? (It is understood that each point is independently chosen relative to a uniform 
distribution on the sphere.) 

9. Four points are chosen uniformly and independently at random in the interior of a 
given circle. Find the probability that they are the vertices of a convex quadrilateral. 
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10. Let k be a positive integer. Suppose that the integers 1, 2, 3, . . . , 3k + 1 are written 
down in random order. What is the probability that at no time during this process, 
the sum of the integers that have been written up to that time is a positive integer 
divisible by 3? Your answer should be in closed form, but may include factorials. 

11. Let (x1, x2, . . . , xn) be a point chosen at random from the n-dimensional region defined 
by 0 < x1 < x2 < · · · < xn < 1. Let f be a continuous function on [0, 1] with f(1) = 0. 
Set x0 = 0 and xn+1 = 1. Show that the expected value of the Riemann sum 

nX 
(xi+1 − xi)f(xi+1) 

i=0 R 1 
is 

0 f(t) P (t) dt, where P is a polynomial of degree n, independent of f , with 0 ≤ 
P (t) ≤ 1 for 0 ≤ t ≤ 1. 

12. Choose n points x1, . . . , xn at random from the unit interval [0, 1]. Let pn be the 
probability that xi + xi+1 ≤ 1 for all 1 ≤ i ≤ n − 1. Find a simple expression for P 

n 1 2 + 1 pnx = 1 + x + x x3 + · · · . n≥0 2 3 

13. A dart, thrown at random, hits a square target. Assuming any two parts of the target 
of equal area are equally likely to be hit, find the probability that the point hit is nearer √ 
to the center than to any edge. Express your answer in the form (a b + c)/d, where 
a, b, c, d are integers. 

14. If α is an irrational number, 0 < α < 1, is there a finite game with an honest coin 
such that the probability of one player winning the game is α? (An honest coin is one 
for which the probability of heads and the probability of tails are both 1/2. A game is 
finite if, with probability 1, it must end in a finite number of moves.) 

15. Let C be the unit circle x2 +y2 = 1. A point p is chosen randomly on the circumference 
C and another point q is chosen randomly from the interior of C (these points are chosen 
independently and uniformly over their domains). Let R be the rectangle with sides 
parallel to the x- and y-axes with diagonal pq. What is the probability that no point 
of R lies outside of C? 

16. Let pn be the probability that c + d is a perfect square when the integers c and d are√ 
selected independently at random from the set {1, 2, . . . , n}. Show that limn→∞(pn n) √ 
exists, and express this limit in the form r( s − t) where s and t are integers and r is 
a rational number. 

17. The points 1, 2, . . . , 1000 are paired up at random to form 500 intervals [i, j]. What is 
the probability that among these intervals is one which intersects all the others? 

18. The temperatures in Chicago and Detroit are x◦ and y◦ , respectively. These tempera-
tures are not assumed to be independent; namely, we are given: 
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(i) P (x◦ = 70◦), the probability that the temperature in Chicago is 70◦ , 

(ii) P (y◦ = 70◦), and 

(iii) P (max(x◦, y◦) = 70◦). 

Determine P (min(x◦, y◦) = 70◦). 

19. In the Massachusetts MEGABUCKS lottery, six distinct integers from 1 to 36 are 
selected each week. Great care is exercised to insure that the selection is completely 
random. If Nmax denotes the largest of the six numbers, find the expected value for 
Nmax. 

20. (a) A fair die is tossed repeatedly. Let pn be the probability that after some number 
of tosses the sum of the numbers that have appeared is n. (For instance, p1 = 1/6 
and p2 = 7/36.) Find limn→∞ pn. 

(b) More generally, suppose that a “die” has infinitely many faces, marked 1, 2, . . . . P∞ When the die is thrown, the probability is ai that face i appears (so i=1 ai = 1). 
Let pn be as in (a), and find limn→∞ pn. Assume that there does not exist k > 1 
such that if ai 6= 0, then k|i (otherwise it is easy to see that lim pn doesn’t exist). 

21. Suppose that each of n people write down the numbers 1, 2, 3 in random order in one 
column of a 3×n matrix, with all orders equally likely and with the orders for different 
columns independent of each other. Let the row sums a, b, c of the resulting matrix by 
rearranged (if necessary) so that a ≤ b ≤ c. Show that for some n ≥ 1995, it is at least 
four times as likely that both b = a + 1 and c = a + 2 as that a = b = c. 

22. At time t = 1 choose two numbers x1, y1 uniformly and independently from [0, 1]. At 
time t = 2 choose two further numbers x2, y2, etc. What is the expected time n at P n 2 2 which (x + y ) > 1 for the first time? i=1 i i 

Note. It may seem more natural to choose just one number at a time, but then the 
answer is not as elegant. 

23. A fair coin is flipped until the number of heads exceeds the number of tails. What is 
the expected number of flips? 

PROBLEMS ON PROBABILITY GAMES 

24. An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with 
uniform probability. Your objective is to select n in an odd number of guesses. After 
each incorrect guess, you are informed whether n is higher of lower, and you must 
guess an integer on your next turn among the numbers that are still feasibly correct. 
Show that you have a strategy so that the chance of winning is greater than 2/3. 

25. A deck of cards (with 26 red cards and 26 black cards) is shuffled, and the cards are 
turned face up one at a time. At any point during this process before the last card is 
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turned up, you can stay “stop.” If the next card is red, you win $1; if it is black, you 
win nothing. What is your best strategy? In particular, is there a strategy which gives 
you an expectation of better than 50 cents? 

26. In the previous problem suppose that you start with $1 and after each card is shown 
you can bet (at even odds) on any outcome you choose (red or black) an amount equal 
to any fraction of your current worth. You can certainly guarantee that you end up 
with $2 — just wait until one card remains before you bet. Can you guarantee that 
you will end up with more than $2? If so, what is the maximum amount you can be 
sure of winning? 

27. Alice takes two slips of paper and writes a different integer on each. Bob then chooses 
one of the slips and looks at the integer written on it. He can then keep this slip of 
paper or exchange it for the other slip. If he ends up with the larger integer, he wins. 
Is there a strategy for Bob which gives him a probability of more than 50% of winning? 

28. Suppose in the previous problem that two real numbers in the interval [0, 1] are chosen 
uniformly at random. Alice looks at the two numbers and then decides which one to 
show Bob. Now if Alice chooses optimally can Bob do better than break even? What 
are the optimal strategies of Bob and Alice? 
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