PROBLEMS ON RECURRENCES

1. Let $T_{0}=2, T_{1}=3, T_{2}=6$, and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3} .
$$

The first few terms are: $2,3,6,14,40,152,784,5168,40576,363392$. Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are wellknown sequences.
2. For which real numbers a does the sequence defined by the initial condition $u_{0}=a$ and the recursion $u_{n+1}=2 u_{n}-n^{2}$ have $u_{n}>0$ for all $n \geq 0$? (Express the answer in simplest form.)
3. Prove or disprove that there exists a positive real number u such that $\left[u^{n}\right]-n$ is an even integer for all positive integers n. (Here, $[x]$ is the greatest integer $\leq x$.)
4. Define u_{n} by $u_{0}=0, u_{1}=4$, and $u_{n+2}=\frac{6}{5} u_{n+1}-u_{n}$. Show that $\left|u_{n}\right| \leq 5$ for all n. (In fact, $\left|u_{n}\right|<5$ for all n. Can you show this?)
5. Show that the next integer above $(\sqrt{3}+1)^{2 n}$ is divisible by 2^{n+1}.
6. Let $a_{0}=0, a_{1}=1$, and for $n \geq 2$ let $a_{n}=17 a_{n-1}-70 a_{n-2}$. For $n>6$, show that the first (most significant) digit of a_{n} (when written in base 10) is a 3 .
7. Let a, b, c denote the (real) roots of the polynomial $P(t)=t^{3}-3 t^{2}-t+1$. If $u_{n}=$ $a^{n}+b^{n}+c^{n}$, what linear recursion is satisfied by $\left\{u_{n}\right\}$? If a is the largest of the three roots, what is the closest integer to a^{5} ?
8. Solve the first order recursion given by $x_{0}=1$ and $x_{n}=1+\left(1 / x_{n-1}\right)$. Does $\left\{x_{n}\right\}$ approach a limiting value as n increases?
9. If $u_{0}=0, u_{1}=1$, and $u_{n+2}=4\left(u_{n+1}-u_{n}\right)$, find u_{16}.
10. Let $a_{0}=1, a_{1}=2$, and $a_{n}=4 a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of a_{2015}.
11. Let $a_{0}=5 / 2$ and $a_{k}=a_{k-1}^{2}-2$ for $k \geq 1$. Compute

$$
\prod_{i=0}^{\infty}\left(1-\frac{1}{a_{k}}\right)
$$

in closed form.
12. (a) Define $u_{0}=1, u_{1}=1$, and for $n \geq 1$,

$$
2 u_{n+1}=\sum_{k=0}^{n}\binom{n}{k} u_{k} u_{n-k}
$$

Find a simple expression for $F(x)=\sum_{n \geq 0} u_{n} \frac{x^{n}}{n!}$. Express your answer in the form $G(x)+H(x)$, where $G(x)$ is even (i.e., $G(-x)=G(x))$ and $H(x)$ is odd (i.e., $H(-x)=-H(x))$.
(b) Define $u_{0}=1$ and for $n \geq 0$,

$$
2 u_{n+1}=\sum_{k=0}^{n}\binom{n}{k} u_{k} u_{n-k} .
$$

Find a simple expression for u_{n}.
13. For a positive integer n and any real number c, define x_{k} recursively by $x_{0}=0, x_{1}=1$, and for $k \geq 0$,

$$
x_{k+2}=\frac{c x_{k+1}-(n-k) x_{k}}{k+1} .
$$

Fix n and then take c to be the largest value for which $x_{n+1}=0$. Find x_{k} in terms of n and $k, 1 \leq k \leq n$.
14. Let $f(x)$ be a polynomial with integer coefficients. Define a sequence a_{0}, a_{1}, \ldots of integers such that $a_{0}=0$ and $a_{n+1}=f\left(a_{n}\right)$ for all $n \geq 0$. Prove that if there exists a positive integer m for which $a_{m}=0$ then either $a_{1}=0$ or $a_{2}=0$.
15. Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \cdots\right\}
$$

16. Let $1,2,3, \ldots, 2005,2006,2007,2009,2012,2016, \ldots$ be a sequence defined by $x_{k}=k$ for $k=1,2, \ldots, 2006$ and $x_{k+1}=x_{k}+x_{k-2005}$ for $k \geq 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006 .
17. Let $a_{1}<a_{2}$ be two given integers. For any integer $n \geq 3$, let a_{n} be the smallest integer which is larger than a_{n-1} and can be uniquely represented as $a_{i}+a_{j}$, where $1 \leq i<j \leq n-1$. Given that there are only a finite number of even numbers in $\left\{a_{n}\right\}$, prove that the sequence $\left\{a_{n+1}-a_{n}\right\}$ is eventually periodic, i.e. that there exist positive integers T, N such that for all integers $n>N$, we have

$$
a_{T+n+1}-a_{T+n}=a_{n+1}-a_{n}
$$

18. Let k be an integer greater than 1 . Suppose that $a_{0}>0$, and define

$$
a_{n+1}=a_{n}+\frac{1}{\sqrt[k]{a_{n}}}
$$

for $n>0$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{k+1}}{n^{k}}
$$

19. Let $x_{0}=1$ and for $n \geq 0$, let $x_{n+1}=3 x_{n}+\left\lfloor x_{n} \sqrt{5}\right\rfloor$. In particular, $x_{1}=5, x_{2}=26$, $x_{3}=136, x_{4}=712$. Find a closed-form expression for x_{2007}. ($\lfloor a\rfloor$ means the largest integer $\leq a$.)
20. (a) Let a_{0}, \ldots, a_{k-1} be real numbers, and define

$$
a_{n}=\frac{1}{k}\left(a_{n-1}+a_{n-2}+\cdots+a_{n-k}\right), \quad n \geq k .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$ (in terms of $a_{0}, a_{1}, \ldots, a_{k-1}$).
(b) Somewhat more generally, let $u_{1}, \ldots, u_{k} \geq 0$ with $\sum u_{i}=1$ and $u_{k} \neq 0$. Assume that the polynomial $x^{k}-u_{1} x^{k-1}-u_{2} x^{k-2}-\cdots-u_{k}$ cannot be written in the form $P\left(x^{d}\right)$ for some polynomial P and some $d>1$. Now define

$$
a_{n}=u_{1} a_{n-1}+u_{2} a_{n-2}+\cdots+u_{k} a_{n-k}, \quad n \geq k
$$

Again find $\lim _{n \rightarrow \infty} a_{n}$. (Part (a) is the case $u_{1}=\cdots=u_{k}=1 / k$.)
21. (a) (repeats Congruence and Divisibility Problem \#22) Define u_{n} recursively by $u_{0}=$ $u_{1}=u_{2}=u_{3}=1$ and

$$
u_{n} u_{n-4}=u_{n-1} u_{n-3}+u_{n-2}^{2}, \quad n \geq 4 .
$$

Show that u_{n} is an integer.
(b) Do the same for $u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=1$ and

$$
u_{n} u_{n-5}=u_{n-1} u_{n-4}+u_{n-2} u_{n-3}, \quad n \geq 5 .
$$

(c) (much harder) Do the same for $u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=1$ and

$$
u_{n} u_{n-6}=u_{n-1} u_{n-5}+u_{n-2} u_{n-4}+u_{n-3}^{2}, \quad n \geq 6
$$

and for $u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{6}=1$ and

$$
u_{n} u_{n-7}=u_{n-1} u_{n-6}+u_{n-2} u_{n-5}+u_{n-3} u_{n-4}, \quad n \geq 7 .
$$

(d) What about $u_{0}=u_{1}=u_{2}=u_{3}=u_{4}=u_{5}=u_{6}=u_{7}=1$ and

$$
u_{n} u_{n-8}=u_{n-1} u_{n-7}+u_{n-2} u_{n-6}+u_{n-3} u_{n-5}+u_{n-4}^{2}, \quad n \geq 8 ?
$$

22. (very difficult) Let a_{0}, a_{1}, \ldots satisfy a homogeneous linear recurrence (of finite degree) with constant coefficients. I.e., for some complex (or real, if you prefer) numbers ν_{1}, \ldots, ν_{k} we have

$$
a_{n}=\nu_{1} a_{n-1}+\cdots+\nu_{k} a_{n-k}
$$

for all $n \geq k$. Define

$$
b_{n}= \begin{cases}1, & a_{n} \neq 0 \\ 0, & a_{n}=0\end{cases}
$$

Show that b_{n} is eventually periodic, i.e., there exists $p>0$ such that $b_{n}=b_{n+p}$ for all n sufficiently large.

MIT OpenCourseWare
https://ocw.mit.edu/

18.A34 Mathematical Problem Solving (Putnam Seminar)

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

