Second proof of remark given last time:
Assume $x_{0} \subseteq x_{1} \subseteq x_{2} \subseteq$ ave increasing tuples of varkbles. parkin
$p_{0}\left(x_{0}\right) \subseteq p_{1}\left(x_{1}\right) \subseteq \cdots$ are increasing complete types
Let $a_{i} \neq p_{i} \forall i$
For each $i \leqslant j$, let $a_{j, i}$ be the subtuple of oj corresponding to x_{i}.
Define $b_{0} \subseteq b_{i} \subseteq b_{2} \subseteq \cdots$ st $b_{i} \vDash p_{i}$
Let $b_{0}=a_{0}$. Assuming me have b_{i}, the $\operatorname{tp}\left(b_{i}\right)=\operatorname{tp}\left(a_{i+1, i}\right)=p_{i}$
so there is an autumorphisin f sending anti, ito bi.
Let $b_{i+1}=f\left(a_{i+1}\right)$. Let $b=U_{b_{i}}$ Thun $b \neq U_{p i}$.

Continued on next page...

Definition A partial type $p(x, b)$ divides over c $(x, b, c$ are possibly infinite tuples of variables/ elements of U) If there is an indiscernible sequence $\left(b_{i}: i<\omega\right)$ in $\operatorname{tp}(b / c)$ st. $\bigwedge_{i<c} p\left(x, b_{i}\right) \quad\left[=U_{p}\left(x, b_{i}\right)\right]$ is inconsistent.

Remark: If ($b_{i}: i<c i$) is an indiscernible sequence int (b / c) then it has an automorphic image which is also c-indiscernible.

Proof: 7 By compactness, for every λ, there is a similar sequence/ ϕ

$$
i=\operatorname{tp}(n / c)
$$

$$
\begin{aligned}
& \bigwedge_{n} \Lambda_{i \ll i n} p_{n}\left(x_{i_{i}} \ldots x_{i_{i-1}}\right) \\
& \text { consistent.). }
\end{aligned}
$$

Now extract a -indiscernible sequence: ($b_{i}^{\prime \prime}$: $i<(i)$
\checkmark is b_{i}^{i} the : instar sequence intel $b^{b l c}$) of legit λ ? yes
(1) $b_{i}{ }^{\prime} \mid=$ qq for all $i \Rightarrow b_{i}{ }^{\prime \prime} \vDash q$
(2)

$$
\begin{aligned}
& \forall i_{0}<\ldots<i_{n-1} \quad \vDash p_{n}\left(b_{i}{ }^{\prime} \ldots b_{i_{n-1}}\right) \Rightarrow k p_{n}\left(b_{0}^{4} \ldots b_{n-1}{ }^{\prime \prime}\right) \\
& \Rightarrow \quad \operatorname{tp}\left(b_{i}: i<c i\right)=t p\left(b_{i}^{\prime \prime}: i<c i\right) \text {. }
\end{aligned}
$$

$\Rightarrow b_{<\omega}^{\prime \prime}$ is an actomerphic image of $b_{<0}$.
Definition $a \underset{c}{\underset{c}{w}}$ (read: a independent of b over c) if $\operatorname{tpp}^{c}(a / b c)$ does not divide /c.

Proposition: $a_{c} b$ if andonly if every indiscernible sequence c)

Proof: \Rightarrow : Assume $a \frac{L}{c} b$ ie $t p(a / b c)$ does not divide (And) over c. white $p(x, b c)=\operatorname{tp}(a / b c)$
Let $\left(b_{i} ; i<\omega\right)$ be an indiscernible sequence in $\operatorname{tp}(b / c)$

By the remarks there is an artomorphic in age
(bi: $1<\omega$) which is c-indiscernible and in $t p(b / c)$]
$\Rightarrow(b i c: i<\omega)$ is indiscernible in ep $(b c / c)$.
Since $t p(a / b c)$ dud over c, there is $a^{\prime} F \Lambda p\left(x, b_{i} c\right)$
In particular, $a^{\prime} \vDash \operatorname{tp}(a / c)$
Let f be an artomophism st $f\left(a^{\prime} c\right)=a c$.
Therefore $\left(b_{i}^{\prime \prime}\right):=f\left(b_{i}\right)$ is an inctumorphic image of $\left(b_{i}\right)$ and $E A p\left(a, b_{i}^{i c} c\right) \Rightarrow b_{i} 1 E \operatorname{tp}(b / a c)$
\Leftarrow Let $\left(b_{i} c_{i}\right) b e$ any $a_{\text {a }}$ indiscernible sequence in $\operatorname{tp}(b c / c) \Rightarrow \frac{c_{i} c}{\forall i}$ W_{e} need to find $a^{\prime} \neq \Lambda p\left(x, b_{i}\right)$
by assumption (bi) has a c-automorphic image (bi) in to b/ac) Let f be the automorphism \& let $a^{\prime}=f^{\prime}(a)$

Then $\Lambda p\left(a, b_{i}{ }^{i} c\right) \Rightarrow \Lambda p\left(a^{\prime}, b_{i} c\right)$.
Corollary: (i). Downward right-hand transitivity
$\forall a, b, c, d: \quad a \underset{c}{\downarrow} b, d \Rightarrow a \bigcup_{c} b \wedge$ a $\underset{a c}{ } d$.
(2) Upward leff-hand transitivity:
$a \underset{c}{\downarrow} b$ and $d \underset{a c}{\underset{c}{~} b} \Rightarrow a d \underset{c}{\downarrow} b$.
Proof (1) Assume $a \underset{c}{\bigcup_{1}} b d$ then it (b) is c-indiscernible in tpib/d, then by extensionfextraction, he can find (di) st. (bidi) is c-indiscernible in $\operatorname{tp}(b i / c)$. \quad.ie $\operatorname{tp}(\operatorname{bidi} / C)$
(Extend to $\left(b_{i}: i<\lambda\right)$. for each i find di st. bide \equiv_{c} bd $=4 p(b d / c)$. by ant ending of to bi)
and extract a i-indiscernible sequence $\left(b_{i}^{\prime} d_{i}^{\prime}\right)$.
but $b_{<\omega} \equiv_{c} b_{<\omega}^{\prime}$ (bothare similar c-indiscernible seq of some length.
So we man (wMd) assume $b_{\text {ci }}=b_{\text {ea }}^{\prime}$.
 in particular ($b_{i}{ }^{\prime}$) is a c-automorphic image of (b_{i}) in $\operatorname{tp}(b / a c) \Rightarrow a \underset{c}{\underset{c}{(b c d i})} b$.
Now: let (blat) be bi-indiscernible in to (action)
it ${ }^{\text {it }}$ wow
Then Anat is c-indiscernible in to $\left(b^{c} d / c\right)$.
Let $\operatorname{tp}(a / b c d)=q(x b c d)$.

So $A q\left(x, b c d_{i}\right)$ is insistent $\Rightarrow a d_{b c} d$
(2). Assume $a \frac{\sqrt{c}}{b}$, d $\underset{a c}{ } b$

Let (bi) be a i-indiscernible sequence in $t_{p}(b / c)$.
Since a $\frac{1}{c} b$ there is a c-automaphic image $\left(b_{i} 1\right)$ in $f(b)$ $\operatorname{Ep}_{\mathrm{p}}(\mathrm{blac})$.
bit is (-indiscernible and by a previous remark has c-automophic image which is stat in ep (b/ac) and in addition is ac-indiscemible.

So me may assure $\left(b_{i} i^{\prime}\right)$ is ac-iadiscernible.
Since d $b_{i c} b$, then $\left(b_{i}^{i}\right)$ has an ac-automophic inge in $t_{p}(b / a c d)$
Conclusion (bi) has a a-automorphiz inure in to $(b / a c d)$ \Rightarrow ad ${\underset{c}{c}} b$
Lemma A portia type $p(x, b)$ divides $l e$ iff there is a (formula $\varphi(x, b) \in p(x, b)$ which does.
(Conversion: all partial types are dosed under conjunction)
Prog E: clear.
\Rightarrow Assuive $(b i)$ is (ndiscernible and $\frac{\mid}{s} \cup p(x, b i)$ is inconsistent. By compactness, only finitely many
formulis are required for inconsistency, say

$$
\varphi_{0}\left(x, b_{i_{i}}\right) \in p\left(x, b_{i}\right), \cdots, \varphi_{k-1}\left(x, b_{i_{k-1}}\right) \in p\left(x, b_{i_{k-1}}\right)
$$

Let $\psi=\Lambda \varphi_{i}(x, y)$. Then $\psi(x, b) \in p(x, b)$. and $A \psi\left(x, b_{i}\right)$ is inconsistent $\Rightarrow \psi(x, b)$ divides $/ c$.

Corollary Finite (haracter $a \underset{c}{\underset{c}{ } b}(a, b, c$ are possibly infinite) $\Leftrightarrow \forall a^{\prime} \subseteq a$ and $\forall b^{\prime} \leq b$ finite, $a^{\prime} \cup b^{\prime}$
Proof \Rightarrow : clear.
\approx : it $a \notin b$ them there is a formula $\varphi(x, b c) \in \in p(a)$ which divicks over C.
now only finite subtuples $\frac{x^{i} c}{} x$ and er and $b i c b$ actually appear in φ. Let $a^{\prime} \subseteq a$ correspond to $x^{\prime} \subseteq x$.

$$
\begin{aligned}
& \Rightarrow \varphi^{\prime}\left(x^{\prime}, b^{\prime} c\right) \in t p\left(a^{\prime} / b^{\prime} c\right) . \\
& \Rightarrow a^{\prime} \not \chi_{c} b^{\prime}
\end{aligned}
$$

