Scional proof of remark given but time:
Assume
$$x_0 \le x_1 \le x_2 \le \dots$$
 are increasing types of variables.
ported
po(x_0) \le p_1(x_1) \le \dots are increasing complete types
Let $a_i \ne p_i$ $\forall i$
Multiple of $a_{j,i}$ be the subtype of a_j corresponding to x_i .
Define $b_0 \le b_1 \le b_2 \le \dots$ set $b_i \ne p_i$
Let $b_0 = a_0$. Assuming ne have b_i , the $tp(b_i) = tp(a_{iH,i}) = p_i$
so there is an automorphism f sending $a_{iH,i}$ to b_i .
Let $b_{iH} = f(a_{iH})$. Let $b = Ub_i$ Then $b \ne Up_i$.

Continued on next page...

1

No were extract a c-indiscernible sequence ? (bi":ier
is bit the impler equence
$$utp(blc)$$
 of length λ ? yes
(i) bit = q for all $i \Rightarrow bit = q$.
(i) $\forall io < \dots < in-1 + pn(bio' \dots bin-1) \Rightarrow pn(bo' \dots bn-1'')$
 $\Rightarrow tp(bi: i < \omega) = tp(bit' : i < \omega).$
 $\Rightarrow b_{\omega}$ is an automorphic image of b_{ω} . []

Definition A partial type

st. $\bigwedge_{i \leq \omega} p(x, b_i) = U p(x)$

c-indiscernible.

Proof: There is By compactness, for in tp(b/c). [let

2/11 Simplicity Proposition. at 6 if and only if every indiscernible sequence in tp[b/c) has in automorphic image in tp[b/ac]. Proof: =>: Assume a Lb is tp["/bc) does not divides (and) over C. while p(x,bc) = tp(a/bc). let (bilicw) be an indiscernible sequence in tp(b/c). Then (bit: icco) is indisternible in tptbc/c). By the remark, there is an automorphic in age (bi': i < w) which is c-indiscernible and in tp[b/c).) => (bit c: isw) is mindiscernible in tp(bc/c). Since tpla/be) and over a, there is a' = A pla, bitc). In particular, $a' \neq tp(a/c)$. Mathy let f be an Cartomorphism st f(a'c) = ac. Therefore (bi") := f(bit) is an intermorphic in ge of (bi) and EAP(a, bitc) = bit = tp(blac).⇐: Let (bici) be any amindiscernible sequence in tp(bc/c) => ci=c. tompontenton to a analycan hab We need to find $a' \neq A p(x, bic)$. by assumption (bi) has a c-automorphic image (bi) in tp(blac). let f be the automorphism & let a'= f'(a).

.

.

· · ·

2/11 Simplicity Theory So Ag(2, bcdi) is consistent = and d. Assume a U b, d U b. (2)Let (bi) be a i-indiscernible sequence in tp(b/c). Since a U b there is a c-automorphic image (bi/) in (Ep(b/ac) Byvancantexoresonordany bi' is (-indiscernible and by a previous remark has c-automorphic image which is still in tp (B/ac) and B in addition is ac-indiscernible. So ne may assume (bil) is ac-indiscernible. Since d U b, then (bi') his an ac-automorphic image in tp(b/acd) Conclusion (bi) has a c-automorphic maye in tp(blacd) = ad Ub Lemma A partial type place) divides /c iff there is a Formula q(x,b) E p(x,b) which does. (convension: all partial types are closed inder conjunction) Proof the clear =>. Assume (bi) is (-indiscernible and \$ Up(2, bi) is in consistent. By compactness, only finitely many

$$\begin{aligned} z/11 \\ simplicity \\ formulas are required for inconsistency, say \\ \varphi_0(x, b_i_0). &\in p(x, b_i_0), ..., \varphi_{k_1}(x, b_{k_1}) \in p(x, b_{k_1}). \\ let & = A \varphi_i(x, y_i). Then $\varphi(x, b) \in p(x, b). \\ and A \psi(x, b_i) is inconsistent $\Rightarrow \psi(x, b) divides /c. \\ \hline \\ (orollary) \quad Finite (haracter a \psi b & the (a, b, c are possibly infinite) \\ & \forall a' \in a and +b' \in b finite, a' \psi b' \\ \hline \\ Proof \Rightarrow: clear. \\ & \leq : if a & b then there is a formula & (iz, bc) \in tp(a'k) \\ & which divides over c. \\ & now only finite subtoples allows and b' \in b actually \\ & appear in & \psi. & let a' \in a (or respond to x' \in z. \\ & \Rightarrow & (3(x', b)c) \in tp(a'/b'c). \\ & \Rightarrow & a' & k b' \end{bmatrix}$$$$

-

•

·.. .: