个i=6 100 from list lecture:
$p(x, a)=$ partinitype over a with boindedly movie solutions.
$B=\{b \cdot p(b, a)\}$ is bounded, we look (ora lode.
$\Phi=\{\varphi(x, y)[x, y$ in the samesurt $]: T f \forall x>\varphi \mid x, j)\}$
If follows: $\forall \varphi \in \Phi$ In maximal st. $\bigwedge_{i<n_{\psi}} p\left(x_{i}, a_{1} \Lambda_{i, \wedge_{0}, \varphi} \varphi\left(x_{i}, x_{j}\right)\right.$ ionisitent.

Continued on next page...

Define $E\left(z, z^{\prime}\right):=\left(z=z^{\prime}\right) \vee\left(z, z^{\prime} k \operatorname{tp}(a) \Lambda\right.$

$$
\begin{aligned}
& \wedge \bigwedge_{\varphi \in \Phi}\left[\exists x_{<n_{\varphi}} \bigwedge_{i<n_{\psi}} p\left(x_{i} ; z\right) \wedge p\left(x_{i}, z^{\prime}\right) \wedge\right. \\
& \left.\wedge \bigwedge_{i<j<n_{\varphi}} \varphi\left(x_{i}, x_{j}\right)\right)
\end{aligned}
$$

Claim: $E\left(a, a^{\prime}\right) \Leftrightarrow a^{\prime} \equiv a, B=\left\{b ; p\left(b, a^{\prime}\right)\right\}$.
Prof: $\Leftarrow \checkmark$.
\Rightarrow Clearly $E\left(a, a^{\prime}\right) \Rightarrow a \equiv a^{\prime}$.
By symmetry between a, a^{\prime} it suffices to show $B \subseteq$ So let $b \in B$. Assume that $\not \equiv p\left(b, a^{\prime}\right)$.
Let $q(x, z):=\operatorname{tp}(b, a l)$.
Then of $\left(x, a^{\prime}\right) \wedge p\left(y, a^{\prime}\right) \wedge x=y$ is inconsistent.

$$
\Rightarrow \exists z[q(x, z) \wedge p(y, z)] \wedge x=y \text { is inconsistent }
$$

Therefore $\exists z\left[\frac{z}{i} q(x, z) \wedge p(y, z)+\varphi(x, y) \in \Phi\right.$
Since $E\left(a, a^{\prime}\right)$, we have 7 bo $b_{n_{p}-1}$ st.

$$
\begin{align*}
& \forall i<n_{\varphi} p\left(b_{i}, a\right) \cap_{p}\left(b_{i}, i^{+}\right) \tag{*}\\
& \forall i<j<n_{\varphi} \quad \varphi\left(b_{i}, b_{j}\right) .
\end{align*}
$$

Thin (*) $+* \forall i<n \varphi \quad \varphi(b ; b i)$.

Since $p(b, a)$, contradicts maximality of n_{p}.
Another semi-10u:
let ot be a cofinal class of sets, ie:
(1) it is invariant: if $A \in A \& B \equiv A$ then $B \in A$.
(2) $\forall A \exists B$ st $A \subset B$ and $B \in \mathscr{A}$.

Then the "Freer Theorem" holds even if we only assume
 the independence theorem for types over distinguished sets, provided the class of distinguished sets is cofinal.
Only need to reprove $a \underset{c}{\bigcup^{\prime} b} b a a_{c} b$.
Proof Given $a \underset{c}{\underset{c}{d} b}$ and a c-indiscernible sequence ($b_{i}: i<\omega$) in $\operatorname{tp}(b i c)$.
Let $p(x, y)=\operatorname{tp}(a, b / c)$.
Need to show $\Lambda_{p}\left(x, b_{i}\right)$ is consistent.
We're going to reduce to the case where $c \in A$ and (bi: is) is a Morley Sequence /c.
Set $K=|T|^{t}$ (wired of (k) bigenoigh).
Extend the sequence to ($b_{i}: i \leqslant k$).

Find an increasing sequence $\left(c_{i}: i<K\right)$ st. $c_{i} \in \mathcal{A}$ and:

- $c \subseteq c_{0}$
- $b_{i} \in c_{i+1}$
- ($\left.b_{\text {it j }}:{ }_{j i t} \leqslant k\right)$ is c_{i}-indiscernible.

Find it by indiction:
Define $d= \begin{cases}d_{i}=c & \text { if } i=0 . \\ d_{i}=c_{j} b_{j} & \text { if } i=j+1 \\ d_{i}=\bigcup_{j<i} c_{j} & \text { if } i \text { limit }\end{cases}$
Find $c_{3} \prime \in \&$ st. $d \subseteq c_{i s}$ (by upinality).
We know by ind hyp. (bit $j \leqslant k$) is d-indicermble. [case by case; easij] a
By extr/ext find (bi ti): $\leqslant \mathbb{C})$ which is ''indiscernible $^{\prime}$ and similar to over d.

Find i_{i} st. $\left(e_{i}, b_{i+j}{ }^{\prime} j \leqslant k\right) \equiv c_{k}^{\prime},\left(b_{i r j}^{\prime} ; j \leqslant k\right)$
By invariance, $c_{i} \in A$. So me have our ($c i: i<k$).
So now $\exists A \subseteq \bigcup_{i<k} c_{i}$ st. $|A| \leqslant 1+1$, $b_{k} \bigcup_{A} \bigcup_{i<k} c_{i}$
But by copinality, $\exists i$ si $A \subseteq c_{i} \Rightarrow b_{k}{\underset{c}{i}}^{l_{i}^{\prime}} b_{<k}$.

We conclude r (b_{i+j} : $j<k$) is a Morleysegverive/ c_{i} in We may assume (up to a c-automorphism) that \& tplay $b=b_{k}$ and ne may assume (up to a b, i-autuonorphism) that $a \underset{b c}{b_{c}} c_{i}$ Iextension for L^{\prime} II

$$
\Rightarrow a{ }_{c}{ }_{c}^{\prime} b, i_{i} \Rightarrow a c_{i}^{\prime} b
$$

This concludes the reduction. Finish as before
Theovern let. T be a firstorder, stable theorgin \mathcal{d}^{2}.
Let $\alpha_{\sigma}=\alpha \cup\{\sigma\}$ where $\sigma=$ unary function symbol.
let $T_{0}=T U$ "o is an automorphism"
Assume that to has a model companion Ta.
Then (1) T_{A} is simple
(2) If $M \neq T_{A}$ and $a, b, c \in M$. Then a, b in the sense of $T_{\text {it }}$ of

$$
o^{2(a)} \sigma^{\frac{2}{2}(c)}
$$ sense of T.

Moneyer: T_{A} is stable tiff x if A, B ane acted closed in.

Moreover: T_{A} is stable of: [if A, B are adect-closed in the sense of T then so is del er $(A \cup B)]$ a statement about T.

Proof Define $a \underset{c}{\bigcup^{\prime} b} \Leftrightarrow \sigma^{x}(a) \underset{\sigma(c)}{\bigcup^{\top}} \sigma^{\mathbb{4}}(b)$
verity axioms: invariance $\sqrt{ } / \sqrt{\text { syminetry }} \sqrt{ }$

- transitivity \checkmark
- finite character
local characters.
independence them/(Med is stated) models closed under 0 .
this tallow from kist lecture (Exercise)
- extension:

Fact if A is dosed under o then so is ace (A). (Irroial). Write $a d_{0}^{b}(a):=\operatorname{ad}\left(a d_{T}(o \mathbb{Z}(a))=\right.$ minimal ad-closed, o-cloxel set containing a.
We know that the isomorphism type of (ace $(a), a, a)$ determines $t_{p}^{T A}(a)$.
Assume $M \neq T_{A} \& a, b, c \in M, \quad C=a d d_{0}(c), A=a d d_{\sigma}(a c)_{?}$ $B=a d+(c b)$.

Recall the proof of the PAPA:
let $N K T$ sufficiently saturated. Embed A, B, C in N st. $A \underset{C}{\bigcup} B$ let σ_{i} be the image of σ in A
Then $\left.\sigma_{i}\right|_{c}=\left.\sigma_{2}\right|_{c}=$ the inge of $\operatorname{ton} c \ldots$
blah blah blah… $0,0 \sigma_{2}$ extends to an ait of $N:(N, \sigma) \neq T_{O}$.
By defy of model companion, $\exists\left(N^{\prime}, \sigma\right) \neq T_{1}$ st.

$$
(N, \sigma) \leq(N, \sigma)
$$

and $t_{p}^{T_{A}}(a, c) t_{p}^{T_{A}}(b, c)$ are what we wanted.
Note: If To does not have a model companion, them still exists as a cat and the theorem holds

- If $A=\operatorname{ad} \boldsymbol{a}_{\text {a }}(i 4) \Rightarrow$ Her over A are Lascar strong.
$(0,14)$

A type-definable group (in T) is given by a partial type $G(x)$ and another partial type $m(x, y, z)$ st. the set of the realisations of m is the graph of a group operation on the realisations of G, denoted $(G, 0)$
Let (G, \cdot) be definable without parameters in a thick simple cat T.

For a partial type $p(x)$ over A st $p(x)+x \in G$, we define. $D_{G}(p, \equiv) \subseteq U_{\alpha \in \text { ovid }} 三^{\infty}$ as follows:

- $\phi \in D_{G}(p, \equiv) \Leftrightarrow p$ is consistent.
- if $\xi E \equiv^{\infty} \& \times$ limit, then $\left.\xi \in D_{G}(p) \equiv\right) \Leftrightarrow$

$$
\forall \beta<\left.\alpha \quad \xi\right|_{\beta} \in D_{G}(p, \equiv)
$$

- Let $\xi \in 三^{\alpha+1} \xi=\theta A(\varphi, \psi)$ then

$$
\left.\xi \in Q_{G}(p) \equiv\right) \Leftrightarrow \exists g \in G \text { \& parameter } c \text { st. }
$$

$\varphi(x, c)$ divides / A wort ψ and

$$
\theta \in D_{G}(p(x) A \varphi(g ; x, c), \equiv)
$$

mites it easier to be in D_{G} than D.

Since T is simple: $\left.D_{G}\left(p_{j} \equiv\right) \subseteq \equiv\langle | T\right|^{T}$
 note φ^{\prime} is type-cief nat a formula, but it decs n't matter...

Then tang, $\psi^{\prime}(\bar{y}, \bar{z}) \wedge \wedge_{i<k} \varphi^{\prime}\left(x, y_{i}, z_{i}\right)$ is iontractictory: otherwise we have $z_{0}=z_{1}=\ldots=z$ and $\psi(\bar{y})$, $\wedge \varphi(z \cdot x, y)$ thill ix is in possible.
$\Rightarrow \exists$ formulas $\varphi^{\prime \prime}, \psi^{i \prime}$ st. $\psi^{\prime}+\psi^{\prime \prime}, \psi^{\prime} \mid-\psi^{\prime \prime}$ st.
$\Psi^{\prime \prime}$ is in k-inconsistencieg witness for $\varphi^{\prime \prime}$.
So for each pair $(\varphi, \psi) E \equiv$ choose $\operatorname{sech}\left(\psi_{\varphi, \psi}^{\prime \prime}, \psi_{\varphi, \psi}^{\prime \prime}\right) \in \equiv$.
Now if $\left(\left(\varphi_{i}, \psi_{i}\right): i<x\right) \in D_{i}(p, \equiv)$ them

$$
\begin{aligned}
& \left(\left(\varphi^{\prime \prime}\left(\psi_{i}, \psi i\right), \psi_{\left(\psi_{i}, \psi i\right)}^{\prime \prime}\right): i<\alpha\right) \in D(p, \equiv) \subseteq \equiv<|T|^{\top} \\
\Rightarrow & \alpha<|T|^{+} .
\end{aligned}
$$

For $\xi \in \equiv \infty \quad\left(\xi=\left(\left(\varphi_{i}, \psi_{i}\right): i<\alpha\right)\right)$ and a prininaterset θ, we say that $h \in G$ satisfies div, G if I parameters $\left(c_{i}: i<\alpha\right)$ and $(g i \because i<\alpha) \subseteq G$ st.
for all $i \ll \infty \quad \varphi_{i}\left(x, c_{i}\right)$ divides / $A_{c_{i}} g_{j i}$ wot. ψ_{i} and $h F \bigwedge_{i<x} \varphi_{i}\left(g_{i}: x, c_{i}\right)$.

Using thickness, $\operatorname{div}_{\xi,} A_{A}^{G}(x)$ is type-definable.
If $p(x)+x \in G$ is a partial type /A then
$\xi \in D_{G}(p, \equiv)$ iff $p(x) \wedge \operatorname{div}_{G, A}^{G}(x)$ is consistent.
Proof: Same.
Proposition: I. The $D_{G}(-, \equiv$ is translation-invariant:

$$
D_{G}(p(x), \equiv)=D_{G}(p(g \circ x), \equiv) \quad \forall g \in G
$$

II. TFAE: $(g \in(G)$
(i) $g \underbrace{}_{A} B$
(ii) $D_{G}(g / A, \equiv)=D_{G}(g / A B, \equiv)$
(iii) $D_{G}(g / A B, \equiv) \cap m_{G} D_{G}(g / A, \equiv) \neq \phi$. i_{i} maximal et of $D_{G}(9 / A, \equiv)$.
Proof $\quad \alpha=0, \alpha$ limit \checkmark $\xi=\theta \wedge(\varphi, \psi) \in D_{G}(p(x), \equiv), p$ is over A So there are h cst. $\varphi(u, c)$ divides /A wort ψ and $\theta \in D_{G}(p(x) \wedge \varphi(h \circ x, c), \equiv)$.

$$
\Rightarrow \quad \theta \in D_{G}(p(g \cdot x) \wedge \varphi(g h \cdot l, c), \equiv)
$$

Since of was fixed from beginning, me may assume $g \in A$, so
$p(g \sim x)$ is also over A and..$\Rightarrow \xi \in D_{G}(p(g \circ x) \equiv)$ Use version of lemma that says dersn't mother wind it is.
This proves \subseteq, so $D_{G_{T}}(p(g \cdot x), \equiv) \subseteq D_{G}\left(p\left(g^{-1} \cdot g \cdot x, \equiv\right)\right.$
II. (i) \Rightarrow (ii) Sane is for $D(-, \equiv)$.
(ii) \Rightarrow (ii)
(iii) \Rightarrow (i) If $g \notin A$ then there is $c e A B, \varphi(x, y)$, st. $\varphi(x, c)$ divides /A wot ψ and $g \nLeftarrow \varphi(x, c)$. $\varphi\left(y_{k}\right)$

$$
\begin{aligned}
& \Rightarrow \quad g \neq \varphi(1 \cdot x, c) \\
& \left.\Rightarrow \quad \forall \xi \in D_{G}(g / A B, \equiv): \varphi \wedge(\varphi, \psi) \in D_{G_{T}}(g / A) \equiv\right)
\end{aligned}
$$

contradicting (iii)
Diffing $g \in G$ is left-generic over A if whenever $h \in G$ and $g \underset{A}{\underset{A}{m}}$ thun go $\underset{A}{\downarrow} h$.
$g \in G$ is right-generic... hog $\underset{A}{d} h$.
ge is lefttinght generic.

Prop TFAE for ge:
(i) g is right
(ii) g is generic $/ A$ and $D_{G}(g / G, \equiv)=D_{G}(G, \equiv)$.
(iii) $m D_{G}(G, \equiv) \cap D_{G}(g / A, \equiv) \neq \phi$.
vv $\quad g$ is generic $/ A \Leftrightarrow$ generic $/ \phi$ and g ψA.
Proof 回 mog) (i) \Rightarrow (ii)
Assume g is left-generic. Let $\xi \in D_{G}(G)$.
Then $G(x) \wedge \operatorname{div}_{A, j}^{G}(x)$ is consistent, so there is a realisation $h \in G$ st. $\xi \in D_{G}(h / A, \Xi)$.
WM ${ }_{j} \underset{G}{\psi} h \Rightarrow g h \underset{A}{\psi} h$

$$
\begin{align*}
\ldots & \Rightarrow \xi \in D_{G}\left(g^{-1} / A \cup \varepsilon_{g} \operatorname{lo}_{3}, \equiv\right) \subseteq D_{G}\left(g / A I^{2} \equiv\right) \\
& \Rightarrow D_{G}\left(g^{-1} / A\right)=D_{G}(G) .
\end{align*}
$$

Assuming we alverdy proved (iii) \Rightarrow (i)
g^{-1} is bight
$\Rightarrow D_{G}\left(\left(g^{-1}\right)^{-1}, \equiv\right)=D_{G}(G)$.
(ii) \Rightarrow (iii)
(ii) \Rightarrow (i) Assume $\xi \in m G_{G_{T}}\left(G_{j} \equiv\right) \cap D_{G_{T}}\left(g / A_{j}, \equiv\right)$.
ut $h \in G, h \underset{A}{\mathcal{L}} \mathrm{G}$.
Thin $g \in D_{G}(g / A, \equiv)=D_{G}(g / A h, \equiv)=D_{G}(h g / A h, \equiv)$

$$
\leqslant D_{G}(\operatorname{hg} / A, \equiv) \subseteq D_{G}(G, \equiv) .
$$

By maximality of ξ in $D_{G}(G) \equiv$), it is also maximal in $\Rightarrow \operatorname{hg}_{A} h$.
j/3. Remember: $y \in G$ generic over $A \Leftrightarrow D_{G}(g / A, \Xi)=D_{G_{T}}(G, F)$

$$
\Leftrightarrow D_{G}(g / A B, \equiv) \cap m D_{G}(G, \equiv) \neq \phi
$$

$\Leftrightarrow g$ is generic $/ \phi$ and $g \dot{H} A$.
Cor Let gen $(G)=\{$ generics $($ over $\phi)\}$.
Then gen (G) is type definable and nonempty:
If $\left.\xi \in M D_{G}(G) \Xi\right)$ then $\operatorname{gen}(G)=\left\{g \vDash \operatorname{div}_{v_{j},}^{G}\right\}$.

Assume now that G is type definable in a foo. supersimple they.

$$
\left(\operatorname{su}\left(g(A) \geqslant \alpha+1 \Leftrightarrow \exists b \text { st. } \operatorname{su}(g / A b) \geqslant x \text { and } g \psi_{A} b\right)\right. \text {. }
$$

Prop For $g \in G, g \in \operatorname{gen}(G) \Leftrightarrow s u(g)$ is maximal in $\{S \cup(h): h \in G\}$.
Proof let $g \in G$ \& generic, $h \in G$ (any ct),
we went to show $\operatorname{su}(g) \geqslant \operatorname{sU}(h)$.

Fact: If a, b are interdefinable $/ A$ then $\operatorname{su}(a / 14)$ even interalgetoric

$$
\begin{aligned}
& \operatorname{un} \operatorname{su}(a / 14) \\
& =\operatorname{su}(a, b / A)=\operatorname{su}(b / A)
\end{aligned}
$$

(This follows from $\operatorname{lax}, \mathrm{V}$ inequalities $+S U(a / b A)=x(b / a A)=01$
We may assume gi th lowly are about tape of h).
Since g is geverk: ghat.
So $\operatorname{su}(g)=\operatorname{su}(g / n)=\operatorname{su}(g \cdot h / n)=\operatorname{sv}(g h) \geqslant$

$$
\geqslant \operatorname{su}(g h / g)=\operatorname{su}(h / g)=\operatorname{su}(h) .
$$

$\Rightarrow s u(g)$ is maximal.
Conversely assume $S U(g)$ is maximal. Assume $g l$.h.

Then: $\operatorname{su}(g)=\operatorname{su}(g / h)=\operatorname{su}(g h / n) \leqslant \operatorname{su}(g h) \leqslant \operatorname{sc}(g)$ by maximality
\Rightarrow equality so ghq h.
Cor if T is supersimple and its models admit two distinct definable group structiones, them both groups have the same generics.
Not true if T is not supersimple
Examples (1) group of a vector space: g is generic/ A inf $\frac{g \downarrow A \text { and } g \neq 0}{g \notin A>}$;
(2) Additive group of an ACF.
gig is generic $\Leftrightarrow g$ is transcendental /A.
Also for multiplicative group, also have
Move generally, G is an algebraic group them G is definable in ACF and $g \in G$ generic/proms \Leftrightarrow generic in the sense of algebraic geom. /sam proms.
(3). Theory $T=T h$ (probability algebras).
$U=$ Algebra of borelsets of $[0,1]^{k} \operatorname{modu} l o n u l l$ measure sets.
 $\Delta=\{$ ell positive of formulas $\}$.
Define $a \in t=a \Delta b$ (addition of the Boolean ring)

$$
G=(u, \oplus)
$$

Then this is stable and $a \in G$ is generic $\Leftrightarrow \mu(a)=\frac{1}{2}-x_{1}$

G is still tapefinable $/ \phi$ but let it $<G$ type-def $/ t$.
Sang $[G: H]<\infty$ if the index of H in G is bounded.
TFAE: (1) $[G: H]<\infty$
(2) $\exists \mathrm{gEH}$ which is generic /A for G.
(3) $D_{G}\left(G_{G}\right)=D_{G}\left(H_{1} \equiv\right)$
(4) $\left.m D_{G_{T}}\left(G_{T}, \equiv\right) \cap D_{G}(H) \equiv\right) \neq \phi$.

Proof (1) \Rightarrow (2). let $\mathrm{g}^{\text {tit }}$ be generic $/ \mathrm{A}$, let $p \neq \operatorname{stp}(\mathrm{g} / \mathrm{A})$.
H induces an equiv relation on G in e can view $G / A=\{g H: g \in G\}$ as a set of equivalance classes ic hyper imaginaries.
By assumption, $g H \in \operatorname{bdd}(A)$.
So $p(x)+" x \in g H$ ".
Let $g^{\prime} \neq p$ st. $g^{\prime} \downarrow_{A}$. Then $g^{\prime} \in g H$ so $g^{-1} g^{\prime} \in H$. If g is generic/ $B, g_{1}{ }^{-1}$

Proof of Fact Assuage g, h are generic $/ B, g_{B} d h$.
Then, git ave yororic $/ \phi, g d h, g, h / \mathcal{L}$. So/ suffices to prove it/ ϕ.

$$
\begin{aligned}
& \left.D_{G}(g h, \equiv)=D_{G}(g h / g) \equiv\right)=D_{G}(h / g, \equiv) \\
& =D_{G}\left(h_{,} \equiv\right)
\end{aligned}
$$

Fact: if g is generic $/ B, g_{B} \psi_{B} \Rightarrow g h, h g$ are gevervic/B
Prod of Fact: Suffices to prove that $h g$ is generic. (then $\left.(g h)^{-1}=h^{-1} g^{-1}\right)$.
So $\lg {\underset{B}{B}}^{d} h$.

$$
\begin{aligned}
D_{i}(h g / B, \equiv) & =D_{G}(h g / B h, \equiv)=D_{G}(g / B h, \equiv)= \\
D_{i T}(g / B, \equiv) & =D_{G}(G, \equiv) .
\end{aligned}
$$

(2) \Rightarrow (3): Let g witness (2). Then $D_{G}(H, E) \geq D_{G}(g / A, \equiv)$ $\left.=D_{G}(G) \equiv\right)$
(3) \Rightarrow (4) $\quad \checkmark$
(4) \Rightarrow (1) By iartrapositive.

Assume that $[G: H]=0$.
We can find an indiscernible sequence (gi: i<co) st.
gi H $\neq g_{j} H$ for $i \neq j$.
Let $\xi \in D_{i r}(H, \equiv)$.
We can find $h \in H$ st. $\xi \in D_{G}(h / H, \equiv)$ and we may assume $h \underset{A}{\neq} \mathrm{g}$.
Then $\xi \in D_{G T}\left(h / \operatorname{Hg}_{0}, \equiv\right)$
at photic Atping (Af) Thea pluyht
So $\left.\xi \in D_{G t}\left(h / A g_{0}, \equiv\right)=D_{G}\left(g_{0}{ }^{\circ} \mathrm{h} / \mathrm{A} g_{0}\right) \equiv\right)$. Let $p(x y)=\operatorname{tp}\left(g_{0} \cdot h, g_{0} / A\right)$. $\operatorname{Ran} p(x y)+x+y H$.
Then $g \in D_{G}\left(p\left(x, g_{0}\right), \equiv\right)$, and $p\left(x, g_{0}\right)$ divides $/ A$ since $\Lambda x \in g i H$ is contradictory.
Then ξ is not maximal in $D_{G}\left(g_{0} h / A Z \equiv\right)$ and a fortiori not maximal in $\operatorname{DG}_{G}\left(G_{1} \equiv\right)$.
Detn: $G_{A}^{0}:=\bigcap \xi H: H$ is type-definable over $\left.A,[G: H]<\infty\right\}$ is the A-connected component of G. Want to prove (1) $\left[G: G_{A}^{0} J<\infty\right.$ and ${ }^{(2)} G_{A}^{0}$.
Proof (1) Since we only need to consider boundedly many H^{\prime} s.
(2) Since G G ia has bounded index, it has boundedly many conjugacy classes.
If $g G_{A}^{0}=h G_{A}^{0}$ then $g G_{A}^{0} g^{-1}=h G_{A}^{0} h^{-1}$.
let $H^{\prime}=\bigcap$ \{all conjugates of $\left.G_{i A}^{0}\right\}$. Then $\left[G: H^{\prime}\right]<\infty$ and H^{\prime} is A-invariant. $\Rightarrow H^{\prime}$ is type definable $/ A \Rightarrow$

$$
G_{A}^{0} \leqslant H^{\prime} \Rightarrow G_{T} G_{T A}^{0} .
$$

Exercise (Similar): $G_{A}^{0}=G_{\text {Gad }}^{0}(A)$.
Assume $H<G,[G: H]<\infty, H$ type definable $/ A$.
Then $g \in H$ is generic for G / A iff for H.
Proof \Rightarrow
\Leftarrow We know that $\exists h \in H$ which is geveric/A for G.
Let $g \in H$ be generic/ A for H. wis: is generic for G.
We may assume h $\underset{A}{ } g$.
Since is generic for H and h g $\boldsymbol{g} \in H$:
$h g{\underset{A}{3}}_{\mathrm{h}}^{\mathrm{S}}$ and hg is generic for 6 . (Sink h is yemeni for (T)
$h g \underset{A}{\underset{\sim}{v}} h^{-1} \Rightarrow{ }^{\prime} h^{-1}(h g)$ generic for G

Fact if g is generic, $g \psi h$ then gu\& $h g$ are generic.
Cor Every $a \in G$ is a product of two generics
Just choose $g \downarrow$ a generic, $a=g\left(g^{-1} c_{i}\right)$
In other words: $\quad G=\operatorname{gen}\left(G_{T}\right)^{2}$

Prop Let $X \subseteq G$ fype-definable/ / (Otherwise add the parameters to the languages) Assume that for all $a, b \in X$ if $a \notin b$ them $a^{-1} b \in X$. Then $Y:=X^{2}<G$ and every generic of Y is in X. $E g: \quad X=\operatorname{ger}(G)$
Proof Let $X^{\prime}=x \cap x^{-1}$. Then x^{\prime} satisfies thecosimptions.
Also: $X \subset\left(X^{\prime}\right)^{2}$. let $a \in X$. Find $b ; c \in X$ st. $\{a, b, c\}$ are independent. Then $b^{-1} a \in X$; also $a^{-1} b \in X, b^{-1} a \in X^{\prime}$.
Since $b^{-1} a \not \subset c:\left(b^{-1} a\right)^{-1} \cdot c+X$ and $b y$ same argument $\left(b^{-1} a\right)^{-1} c \in X^{\prime}$. so $c \in\left(X^{\prime}\right)^{2}$.
so X, X^{\prime} generate the same subgroup.
So WMA $X=X^{-1}$.
Choose $\xi \in D_{G}(X, \equiv)$ maximal, $d \in X$ st. $\left.\xi \in D_{G}(d) \equiv\right)$.
Let $a, b, c \in X$. We may assume $a, b, c \mathcal{d} d$.
Then $d^{-1} c \in X$ and $b-d \in X$.
Also, $\left.\quad \xi \in D_{c t}(d, \bar{Z})=D_{c_{T}}(d / a, b) \equiv\right)=D_{c_{+}}(b d / a b)$ and $\left.D_{G_{T}}(b d / a b) \subseteq D_{c_{T}}(b d, \equiv) \subseteq D_{G_{T}}(X)=\right)$.

So g is maximal in $D_{G}(b d, \equiv) \Rightarrow b d \downarrow a, b$.
Therefore $a b d \in X$ so $a b c=(a b d)\left(d^{-1} c\right)+X^{2}$

$$
\Rightarrow X^{3} \leq X^{2} \quad \text { so } X^{2}=Y<G \text {. }
$$

Let $g \in Y=X^{2}$ be generic. $y=a b$ for $a, b \in X$. WMA d Ua, b, g.
By same argument: $a b d=g d \in X$.
Since g is generic and $g \psi d$ we have $g d \psi d$

$$
\Rightarrow g=(g d) d^{-1} \in X
$$

Let $p(x)+x \in G$ be a Lascar strong s type. Say over ϕ. The left prestabiliser of p is $S(p)=\{a \in G \mid$ $\exists g \vDash p \quad g 山 a$ stag $\neq p \xi$
lemma $S(p)$ is type definable. $S(p)=S(p)^{-1}$. if $a, b \in S(p)$ and $a \notin b$ then $a b \in S(p)$.
Proof Choose $\xi \in m D_{G_{T}}(p, \equiv)$.
Then $S(p)=\left\{a_{a}: I y\left(p(y) \wedge p(a-y) \wedge \operatorname{div}_{\tilde{j}, a}^{G}(y)\right)\right.$.

Assume $a \in S(p)$ and let $g \psi a$ witness this.
Then: $D_{G_{T}}(g, \equiv)=D_{G_{T}}(g / a, \equiv)=D(a g / a, \equiv)$

$$
\subseteq D_{G}(a g, \equiv)=D_{G}(g, \equiv)=D_{G}(p, \equiv)
$$

So $a g \downarrow a$. In other words $G^{-1} \psi a g$ and $a^{-1} . a g \neq p$ so $a^{-1} \in S(p)$.
Assume $a, b \in S(p)$, a ψb. Let $d a$ witness $a \in S(p)$ and gi ψb witness $b \in E(p)$.
We have $a \downarrow b, g \operatorname{la}^{4}, g^{\prime} \downarrow b, g \equiv g^{(s}$
So $\exists g^{\prime \prime} \downarrow a, b$ st. ag $g^{\prime \prime}, b g^{\prime}$ Fp.
By previous argument: $a g^{\prime \prime} \downarrow$ a.

$$
\begin{aligned}
g^{\prime \prime} \Downarrow a, b & \Rightarrow g^{\prime \prime} \bigcup_{c_{i}} b \Rightarrow a g^{\prime \prime} \bigcup_{a} b \Rightarrow a g^{\prime \prime} \downarrow a, b \\
& \Rightarrow a g^{\prime \prime} \downarrow a^{-1}
\end{aligned}
$$

so $b q^{-1} \in S(p)$
Therefore $S t a b(p):=S(p)^{2}$ is a group and $S(p)$ contains all of its generics.

Prop
With the previous assumptions (ie p is a $\operatorname{lstp} / \phi$),
(i)
P is generic $\Leftrightarrow[G: \operatorname{Stab}(p)]<\infty \Leftrightarrow \operatorname{Stab}(p)=G_{\phi}^{0}$.
(1) \Rightarrow (2): Assume that p is garevic..

Let $g g^{\prime} \neq p$ st. $g 山 g^{\prime}$.
Then $g^{\prime} g^{-1} \downarrow g \Rightarrow g^{\prime} g^{-1} \in S(p) \subseteq S+a_{i}(p)$.
Also $g^{\prime} g^{-1}$ is generic for G.
So Stab (p) contains a goweric so

$$
S t_{a} b(p)>G_{b d d \phi}^{0}=G_{\phi}^{0} . \quad \text { (from exercise). }
$$

Since P is a Lstp and G_{ϕ}^{O} has boundedly many right coset.
$p(x)$ says in which right coset of $G_{\phi}^{0} x$ lies.
Therefore, if $a \in S(p)$ then $o=(a g) \cdot g^{-1} \in G_{\phi}^{0}$.
So $\operatorname{sta}_{a} b(p)<G_{\phi}^{0} \Rightarrow \operatorname{sta} b(p)=C_{\phi}^{0} \phi$.
(2) $\Rightarrow 3$
(3) \Rightarrow (1) Stab (p) has bounded index it contains i: a generic of G; call it h.

Then h is also a generic of $S t a b(p) \Rightarrow h \in S(p)$.
So $\exists g \Downarrow h$ st. g, $h g \neq p$.
Since h is generic, $h g$ is genic $\Rightarrow p$ is generic. Assume T is stable.
lemma G_{ϕ}^{0} has i unique generic type .f ϕ.
Proof Assume not. Then the same is true over bod ϕ.
So ne may assume we work over bod ϕ.
let p, q be two generic types of G_{ϕ}^{O}.
Then $S \operatorname{tab}(p)=\operatorname{Stab}(q)=G_{\phi}^{0}$.
So $p(x)+x \in S(q)$ (since p is generic type of and $q(\lambda)+x \in S(p)$.
Therefore $\exists g \neq p$ and $h \neq q$ st. $g \cup h$ and $g h \neq q$. But 业 p \& q are stationary.
So for all $g \neq p h \neq q$ if $g \psi h \Rightarrow g h \neq q$.
Similarly: Let $p^{-1}=\operatorname{tp}\left(g^{-1}\right)$ when e $g \neq p$ \&

$$
q^{-1}:=\operatorname{tp}^{-p}\left(h^{-1}\right) \quad(h-q)
$$

By same argument for all $h \not \vDash q$ \& $g \not p p$
namely for all $h^{-1} k q^{-1} \& g^{-1} k p^{-1}$ then

$$
\begin{gathered}
g^{-1} \downarrow h^{-1} \quad h^{-1} g^{-1}=p^{-1} . \\
\left(g^{\prime \prime} h\right)^{-1}
\end{gathered}
$$

so $p^{-1}=q^{-1}$ so $p=q$
able)
"Theorem The lannected component G_{A}^{O} does not depend on A. We call it G^{0}.
G is connected (ie $G=G^{\circ}$) of G has a, unique generic type.
Prog let A be any set of parameters.
Assume that $G_{\phi}^{O} \neq G_{A}^{D}$.

Then p is also generic for G and $p \not f x \in G_{\phi}^{0}$.
Therefore p does not divide $/ \phi$.
Let $q=p / \operatorname{bdd}(\phi)$.
So p is the unique nondivextr of q.

Let $a \in G_{\phi}^{\circ}$. Let g be generic for $G_{\phi}^{\circ}(g \neq q)$, and $g \perp a, A$.
Then $g \neq p$. Now $g \psi_{a} A \Rightarrow \operatorname{ag} \psi_{a} A$

$$
\Rightarrow \operatorname{ag} \downarrow a A
$$

and $a g$ is generic for $G_{\phi}^{\circ} \Rightarrow a g \neq q \Rightarrow a g \neq p$.
So $g, \operatorname{ag} k p \Rightarrow a=(\operatorname{ag} a) \cdot g^{-1} \in G_{A}^{0}$.
 int $p^{\prime}=$ generic typ of G°. Then $p^{\prime}=p$-(2) l T $a \in G \backslash G^{\circ}$. Writ ad g. Then ag is generic \Rightarrow ag $\vDash p$. But age $a G^{\circ}$. $*$.
5/10. Making one point clearer from kat time:
Assume T is stable, G type deft gray.
$G_{\phi}^{0}=G_{i b d d}^{0}(\dot{\phi})$ and each has a unique geneva type over ϕ, bold (ψ) rep.
Let p be the generic type of $G^{\circ} \phi$. Then every extern of p to $\operatorname{bdd}(\phi)$ is non-dividing and therefore a generic type of $G_{i o d d}^{0}(\phi)\left[p+x \in G_{\phi}^{0}=G_{b d i}^{0}(\phi)\right]$.
So p has a unique extension to bod (ф).
So even though p is / ϕ it is Lascar strong.

