4/26 100 from list lecture:

p(x, a) = partial hype over a with boundedly includes solutions. $B = \Sigma b \cdot p(b, a) \overline{3} \quad \text{is bounded}, we look for a look .$ $\overline{\Phi} = \Sigma \varphi(x, y) \quad \text{Lix, y in the same sourt } \overline{1} \cdot T = \overline{4} \cdot \overline{4} \cdot \overline{4} \cdot \overline{4} \cdot \overline{4} \cdot \overline{5} \cdot$

Continued on next page...

Define
$$E(z, z') := (z = z') \vee (z, z' \neq tp(a) \land \land \land (t \in z' \neq tp(a)))$$

 $\uparrow \land (t \in z, z') \vee (z, z' \neq tp(a))$
 $\land \land (t \in z', z'))$
 $C(t \in m : E(a, a') = a' = a \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $P(x \neq z) : \neq \sqrt{2}$
 $\Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $e = a' = a' \land B = \{b : p(b, a')\}$
 $e = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $e = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a' = a' \land B = \{b : p(b, a')\}$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a') \Rightarrow (t = a')$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a') \Rightarrow (t = a')$
 $\Rightarrow (t = a' = a') \Rightarrow (t = a') \Rightarrow (t = a') \Rightarrow (t = a')$
 $\Rightarrow (t = a' = a') \Rightarrow (t =$

•

ţ

()= T Ø Ø **M F** Ø ø F 6 Ø Ø F ø M **A** F F F F F ø ø Ø Ø ĥ ĥ ĥ S. ĥ ħ Ð ħ ٢

Since
$$p(b,a)$$
, contradicts maximality of np . \square .
Another somi-low:
let of be a cafinal class of sets, ie:
(i) it is invariant: if $A \in A \in B \equiv A$ then $B \in A$.
(i) it is invariant: if $A \in A \in B \equiv A$ then $B \in A$.
(i) $H \equiv B$ st. $A \subseteq B$ and $B \in A$.
Then the "Freer Theorem" holds even if we only assume
"symmetry, the original of types over distinguished sets,
provided the class of distinguished sets is cofinal.
Unly need to reprove $a \bigcup b \Rightarrow a \bigcup b$.
Ploof Given $a \bigcup b$ and $a = c-indiscernible sequence (bi: i < co)$
in $tp(blc)$.
Need to show $A p(x, bi)$ is consistent.
We're going to reduce to the case where $c \in A$ and
 $(b_i: i < co)$ is a Markey sequence (c.
Set $i \in [T]^+$ (we red of (k) big enough).
Extend the sequence b (bi: $i \leq c$).

Find an increasing sequence (ci:i< K) st. ci E of and:
• c
$$\subseteq$$
 Co
• bi \in Citt
• (bitj: j \leq K) is ci-Indisternizle.
Find it by induction:
Define $d\mathbf{r} = (di = C \quad if i = 0.$
 $f = Ci = Ci = Ci = if i = j + 1.$
 $C \quad di = Ci = Ci = if i = j + 1.$
 $C \quad di = Ci = Ci = if i = init.$
Trind $cg' \in \mathcal{A}$ st. $d \subseteq Cg'$ (by infinity).
We know by nd. byp. (bit): $j \leq K$) is d-indistermible.
Ecase by case; ensy $J = (bit) = j \leq K$ is d-indistermible.
Ecase by case; ensy $J = (bit) = i \leq K$ which is c'-indiccernible
and similar to over d.
Find $Ci = st.$ (e_i , $b_itj = j \leq K$) $\equiv C'_{2}(b_itj' = j \leq K)$
By inversion ce, $c_i \in \mathcal{A}$. So we have our ($c_i = i < K$).
So now $\exists A \subseteq \bigcup_{i \leq K} A \leq Ci \Rightarrow b_K \int_{i}^{i} b_{iK} K = i$

ł

----т 1

ŝ

1

ì

٤

-

F

T

F

6

6

67

()

6

Ŵ

T

M

M

M

F

F

ø

(i)

Ø

Ø

67

Ø

6

6

67

6

6

()

ł

:

)

M

Ĵ.

W

J

F

<u>J</u>

Ţ

T

T

Ø

ÔŤ

ST

M

Ø

M

F

Ø

F

F

Ø

Ø

Ø

Ŵ

Ŵ

đ

F F

Ċ,

Ø

Recall the proof of the PAPA:
let
$$N \neq T$$
 sufficiently saturated. Embed $A_{,B}, C_{,n}$ N'
s.t. $(A \downarrow B)$ let $\sigma_{,}$ be the image of σ on A
 $\sigma_{,2}$ B .
Then $\sigma_{,1}|_{c} = \sigma_{2}|_{c} = the image of σ on $C_{,...}$
blah blah blah \dots $\sigma_{,1} \cup \sigma_{2}$ extends to an aut of
 $N : (N_{, \sigma} -) \neq T_{\sigma}$.
By defin of model comparison, $\exists (N', \sigma) \neq T_{n}$ st.
 $(N_{, \sigma} -) \neq T_{\sigma}$.
By defin of model comparison, $\exists (N', \sigma) \neq T_{n}$ st.
 $(N_{, \sigma} -) \neq T_{\sigma}$.
 $By defin of model comparison, $\exists (N', \sigma) \neq T_{n}$ st.
 $(N_{, \sigma} -) \leq (N', \sigma)$.
 S_{0} in N' we have $\sigma^{2}\alpha \cup \overline{\sigma^{2}}b$ is a V_{i}^{2} .
 $G = ae(\sigma^{2}(\sigma))$.
 $G = ae(\sigma^{2}(\sigma))$.
 T_{i} whether $\sigma^{2}\alpha \cup \sigma^{2}b$ is a V_{i}^{2} .
 T_{i} when $\sigma^{2}\alpha \cup \sigma^{2}b$ is a V_{i}^{2} .
 $G = ae(\sigma^{2}(\sigma))$.
 T_{i} $T$$$

A type-definable group
$$(In T)$$
 is given by a partial
type $G(x)$ and another partial type $m(x,y,z)$ st.
the realisations of m is the graph of a group operation
on the realisations of G, denoted (G, \cdot)
let (G, \cdot) be definable without parameters in a thick
simple cat T.
For a partial type $p(x)$ over A st. $p(x) + x \in G$,
we define $D_G(p, \Xi) \subseteq \#_{G}^{GH}(\bigcup \Xi^{\alpha} \text{ as follows:})$
 $\phi \in D_G(p, \Xi) \cong p$ is consistent.
 $f \xi \in \Xi^{\alpha} \perp \alpha \lim_{t \to 0} t, \text{ then } \xi \in D_G(p, \Xi) \cong V_{\beta < \alpha} \lesssim_{\{\beta \in D_G(p, \Xi)\}}^{\{\beta \in D_G(p, \Xi)\}} = f g \in G \notin p \text{ partial type } f(x, \psi)$ then
 $\xi \in Q_G(p, \Xi) \cong Jg \in G \notin p \text{ parameter } st.$
 $\psi(n, c) \dim f \in A \text{ partial } f(x, \psi) = 0$

.

關 **M G S S G**r **G** 6 **D** s 6 Ś ſ ſ, ß ø 6 6 6 ð 6) 6 S 6 6 C

6

T

M

Since T is simple:
$$D_{q}(p, \Xi) \subseteq \Xi^{<|T|^{T}}$$

Write $\psi^{i}(x,y,z) := \psi(z,x,y)^{h(u)}\psi^{i}(\overline{y},\overline{z}) := \psi(y_{ck}) \wedge Z_{0} = Z_{1} = \cdots$
note φ^{i} is type-definet a formula, but it decent meter.
Then $H_{2}\overline{y}\overline{g}A\overline{z}\Lambda \quad \psi^{i}(\overline{y},\overline{z})\Lambda \quad \Lambda \quad \varphi^{i}(x_{3}y_{1},z_{c})$ is contradictory:
otherwise we have $z_{0} = Z_{1} = \cdots =: Z$ and $\psi^{i}(\overline{y})\Lambda \quad \psi^{i}(z,x_{3}y_{1}) \quad A_{1}i,i$
 $\Rightarrow \exists formulas \quad \psi^{i}, \quad \psi^{i} \quad st. \quad \varphi^{i} \vdash \psi^{ii}, \quad \psi^{i} \vdash \psi^{ii} \quad st.$
 $\psi^{ii} \quad \dot{s} \quad \dot{n} \quad \text{possible}$.
So for each pair $(\psi, \psi) t \equiv$ choose such $(\psi^{ii}_{p,\psi}, \psi^{ii}_{p,\psi}) t \equiv .$
Now if $((\psi^{i}_{1}, \psi^{i}_{1}) = i \land \alpha) \in G \quad D_{4}(p, \Xi) \quad \text{them}$
 $((\psi^{i}_{1}\psi_{1}\psi_{2}), \quad \psi^{i}_{2}\psi_{2}\psi_{3}) \in i < \alpha) \in D(p_{3}\Xi) \subseteq \Xi^{<|T|^{T}}$
 $\exists x < |T|^{T}.$

For
$$\xi \in \Xi^{\infty}$$
 $(\xi = ((\psi_i, \psi_i) : i < \alpha))$ and a promoter set A ,
we say that he G satisfies $div_{A,\xi}^{G}$ if \mathcal{B}
 \mathcal{F} parameters $(c_i : i < \alpha)$ and $(g_i : i < \alpha) \subseteq G$ s.t.
for all $i < \alpha$ $\psi_i(x, c_i)$ divides $/A_{c_i}g_{ii}$ wrt. ψ_i and
 $h \models \bigwedge_{i < \alpha} \psi_i(g_i : \chi_i c_i)$.

Using thickness, dive,
$$\stackrel{G}{=}(x)$$
 is type-defined e.
If $p(x) \neq x \in G$ is a partial type /A then
 $g \in P_G(p, \Xi)$ iff $p(x) \land div \stackrel{G}{=}(x)$ is consistent.
Proposition: I. The $D_G(-, \Xi)$ is translation-invariant:
 $D_G(p(x), \Xi) = D_G(p(g \cdot x), \Xi)$ $\forall g \in G$.
I. TFAE: $(g \in G)$
(i) $p \downarrow B$
(ii) $D_G(g/A, \Xi) = \bigoplus D_G(g/AB, \Xi)$
(iii) $D_G(g/A, \Xi) = \bigoplus D_G(g/AB, \Xi)$
(iii) $D_G(g/AB, \Xi) \cap MD_G(g/AB, \Xi) \neq d$.
 T_{G} meaned cit of $D_G(g \mid M, \Xi)$.
Proof $T \neq = 0, \propto limit V$.
 $g = \Theta \land (\varphi, \varphi) \in D_G(p(x), \varphi(h \cdot x, c), \Xi)$
 $= \Theta \in D_G(p(g \cdot x) \land \varphi(gh \cdot x, c), \Xi)$

)

G G

Ø

6

6) 6)

Si

6

S

6

6

Ø

Ø

6

6

6

6

6

6

$$P(g \cdot L) \text{ if also over } H \text{ and } \dots \Rightarrow \xi \in D_G(p(g \cdot L, \Xi))$$
Use version of lemme that says doesn't matter what H is.
This proves \subseteq , so $D_G(p(g \cdot L), \Xi) \subseteq D_G(p(g^{\dagger} \cdot g \cdot L, \Xi)) \equiv$
 $\Pi. (i) \Rightarrow (ii) \quad \text{Some as for } D(-, \Xi).$
 $(ii) \Rightarrow (ii) \quad \checkmark$
 $(iii) \Rightarrow (i) \quad \checkmark$
 $(iii) \Rightarrow (i) \quad \squaref \quad g \not L \quad B \quad \text{then there is } c \in HB, \varphi(L, y),$
 $\text{s.t. } \varphi(L, c) \quad \text{divides}/A \quad \text{wrt } \psi \text{ and } g \models \varphi(L, c).$
 $\Rightarrow \quad g \models \varphi(I \cdot L, c).$
 $\Rightarrow \quad \forall \quad \xi \in D_G(g^{I}AB, \Xi) : \quad \xi \land (\psi, \psi) \in D_G(g^{I}A, \Xi)$
 $\text{contradicting (iii)} \quad \square$
 $\frac{\text{Defn}}{g \in G} \quad \text{is left-generic over } A \quad \text{if whenever he } G$
 $\text{ound } g \not \downarrow h \quad \text{then } g \circ h \not \downarrow h,$
 $g \in G \quad \text{is left t right generic.}$

ı

Frop TFAE for gets:
(i) g is MAT-generic/A
(ii) g is generic/A and
$$D_G(9/A_{3,}^{2}, \Xi) = D_G(G, \Xi)$$
.
(iii) $m D_G(G, \Xi) \cap D_G(9/A, \Xi) \neq \phi$.
21 Ξ g b generic/A \equiv generic/ ϕ and $g \downarrow A$.
Proof 14 hq) $U \Rightarrow (ii)$
Assume g is fleft-generic. Let $\xi \in D_G(G)$.
Then $G(x) \land div_{A,S}^{G}(x)$ is consistent, so there is a
realisation $h \in G$ st. $\xi \in D_G(h/A, \Xi)$.
WMA $g \downarrow h \Rightarrow gh \downarrow h$
 $\xi \in D_G(h/A, \Xi) = D_G(h/A_{A,S}^{G}, \Xi) = D_G(h(G)^{-1}/A_{A,S}, \Xi)$
 $U = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f) = f(f) = f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f) = f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (2f)^{-1} + f(f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f) \wedge (f) = f(f)$.
 $T_{i} = f(f) = f(f)$.
 T

.

5/3

Assume new that G is type definitive in a f.o. supersimple theory.
(SU (3/A)
$$\geqslant$$
 and \rightleftharpoons \exists b st. SU(3/Ab) \nexists and $g \not \downarrow b$).
Prop tov $g \in G$, $g \notin g \in n(G) \Leftrightarrow \mathfrak{SU}(g)$ is unstrimul in
Frod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \in g$.
Prod. Let $g \notin G \notin g \circ nerric$, $h \notin G \cap g \cap g \in g$.
Fract: $S \cup (g/A) = S \cup (g/Ab) \Leftrightarrow g \notin b$ (we have preved)
A fract: If a, b are interdefinable $/A$ then $S \cup (g/A)$ \mathfrak{g} .
Exercise If a, b are interdefinable $/A$ then $S \cup (g/A)$.
This fullows from laxal inequalities $f \otimes S \cup (g/A) = S \cup (B/A) = S \cup (B/A) = O \cup ($

.

Ţ

S.

T

Ø

S

T

T

T

F

T

Ø,

Ø,

Ø.

Ø.

67

P

F

F

6

()

F

Ċ

Ê

Ľ

*

¢.

ŗ

1

Theory T = Th (probability algebras). (3). U = Algebra af borelsets of E0,17 K modulo null measure sets. d is (1, V), (1, 0)A = 3 all positive of formulas 3. Define de b == a ab (addition of the Boole in ring) $G = (\mathcal{U}, \mathcal{D}).$ Then this is stable and a EG is generic () $\mu(a)=\pm \frac{1}{2}$, generic/H () $\mathcal{P}(a(AT))=\pm$. G is still definable / but let H<Gr type-def /H. Say [G:H] < 00 if the index of H in G is bounded. TFAE: 0 [G:H] < 0 l):

ar.

<u>ج</u>

6

6

;

f

¢.

$$\begin{array}{l} \underline{Proof} \quad (D =) (D) & \text{let } g^{\text{th}} bc \ generic \ /A, \ \text{let } p = \text{stp} (g / H). \\ H \ induces an equiv relation on Gf & ne can view \\ G / H &= \ \widehat{f}_{g} H : geG \overline{f}. as a set of equivalence classes in hypervision, gH & bdd (H). \\ By assumption, gH & bdd (H). \\ So \quad p(x) \ H & x \in gH'. \\ \text{let } g' \models p \ \text{st. } g' \downarrow g \ \text{men } g' \in gH \ \text{so } g^{-1}g' \in H. \\ \hline H = \ \widehat{f}_{g} generic / B, \ gun \ H \\ \hline Fact \quad Product \ of independent generics \ is generic. \\ Proof of Fact \ Assume g, h \ are generic / B, g \downarrow h, \\ \hline Then \ gih \ are \ generic / (H, g \cup h), \ gh \ H. \\ \hline So \ Suffices \ to \ prove \ if \ / p. \\ \hline f_{G} (gh, =) = D_{G} (gh / g, =) = D_{G} (h/g, =) \\ = \ D_{G}(h, =) \end{array}$$

Fact: If g is governe/B, g & h
$$\Rightarrow$$
 gh, hg are generic/B
Real of Fact: Suffices to prove that hg is generic.
(then (gh)¹ = h¹g¹).
So hg & h.
 $D_{ij}(hg/B, \Xi) = D_{ij}(hg/Bh, \Xi) = D_{ij}(g/Bh, \Xi) =$
 $D_{ij}(g/B, \Xi) = D_{ij}(g_j \Xi)$.
 $2 \Rightarrow (3)$: let g witness (2). Then $D_{ij}(H, \Xi) \ge D_{ij}(g/B_j \Xi)$
 $= D_{ij}(g_j \Xi) = D_{ij}(G_j \Xi)$.
 $3 \Rightarrow (4) \checkmark$.
 $4 \Rightarrow (1)$. By contrapositive.
Assume that $[G:H^{-1}] = \infty$.
We can find an findiscernible sequence $(g_i: i < c_i)$ st.
 $g_i H \neq g_j H$ for $i \neq j$.
We can find hell st. $g \in D_{ij}(h/H_j \Xi)$ and
we may assume h $4 = ge$.
Then $g \in D_{ij}(h/H_ge, \Xi)$

)* |

F

apr .

T

T

Ø

F

T

Ø

ST

FT

F

F

S

F

F

ſ

P

Ē

ſ.

Ģ

ø

Ś

ð

Í

ð

Ŷ

Ø

When
$$f(x_{i}, y_{i}) = tp(h_{i}, y_{i}) + Near pluny ht
So $\xi \in D_{if}(h_{i}, y_{i}) = D_{if}(go^{i}h_{i}, h_{go}) = D_{if}(x_{i}, y_{i}) + x \neq y_{i}$.
Then $\xi \in D_{if}(gih_{i}, g_{o}/A)$. Then $p(x_{i}y_{i}) + x \neq y_{i}$.
Then $\xi \in D_{if}(p(x_{i}, g_{o})) = D_{if}$ and $p(x_{i}g_{o}) = divides /H$ since
 $A \times \in g_{i}$ H is contradictory.
Then ξ is not maximal in $D_{if}(g_{i}) = D_{if}(A) =$$$

S

F

F

67

67

67

8

Ô

6

ß

()

6

ß

¢,

6

1.

Prop. let
$$X \subseteq G$$
 type-definable $/ \emptyset$. (Otherwise add the
permeters to the langage)
Assume that for all a, bet X if a lb then $a^{-1}b \in X$.
Then $Y := X^2 < G$ and every generic of X is in X .
Eq: $X = get(G)$
Proof let $X' = X \cap X^7$. Then X' satisfies the comptions.
Also: $X \subseteq (X')^2$, let at X . Find b, $c \in X$ st.
Sa, b, cS are independent. Then $b^{-1}a \in X$, dw
also $a^{-1}b \in X$, $b^{-1}a \in X'$.
Since $b^{-1}a \cup c$: $(b^{-1}a)^{-1}, c \in X$ and by same
argument $(b^{-1}a)^{-1}c \in X'$. so $c \in (X')^2$.
So X, X' generate the same subgroup.
So WMA $X = X^{-1}$.
Choose $\S \in D_G(X, \Xi)$ maximal, $d \in X$ st. $\S \in D_G(d_3\Xi)$.
(et $a, b, c \in X$. We may assume $a, b, c \cup d$.
Then $d^{-1}c \in X$ and $b \cdot d \in X$.
Also, $\S \in D_G(d, \Xi) = D_G(d/a, b, \Xi) = D_G(bd/ab, \Xi)$.

So § is maximal in
$$DG(bd, \Xi) = bd \int ab$$
.
Therefore $ab d \in X$ so $abc = (abd)(d^{-1}c) \in X^2$
 $\Rightarrow X^3 \subseteq X^2$ So $X^2 = Y < G$.
(et $g \in Y = X^2$ be generic. $y = ab$ for $ab \in X$.
WMA $d \bigcup ab g$.
By some argument: $ab d = gd \in X$.
Since g is generic and $g \lor d$ we have $gd \lor d$
 $\Rightarrow g = (gd) d^{-1} \in X$.
The left pre-stabiliser of p is $S(p) = \xi a \in G$ [
 $\exists g \models p \ g \lor a \ st \ ag \neq p \xi$
[emma $S(p)$ is type definable. $S(p) = S(p)^{-1}$.
if $a, b \in S(p)$ and $a \sqcup b$ then $ab \in S(p)$.
Proof Choose $\xi \in mD_G(p, \Xi)$.
Then $S(p) = \xi a : \exists y (p(y) \land p(a \lor) \land div_{Sa}^{G}(y))$.

-

The second

T

F

M

ST

Ø

Ø

Ø

())

M

M

T

Ø

Ø

Ø

Ø

Ø

Ø

Ø.

(j)

Ø

Ø.

D. C.

र्

....

Assume
$$a \in S(p)$$
 and let $g \forall a$ witness this.
Then: $D_{G}(g, \Xi) = D_{G}(3/a, \Xi) = D(ag/a, \Xi)$
 $\subseteq D_{G}(ag, \Xi) = D_{G}(g, \Xi) = D_{G}(p, \Xi).$
So $ag \forall a$. In other words $a^{-1} \forall ag$ and
 $a^{-1} \cdot ag \neq p$ so $a^{-1} \in S(p)$.
Assume $a, b \in S(p)$, $a \forall b$. let $g \forall a$ witness $a \in S(p)$
and $g! \downarrow b$ witness $b \in b(p)$.
We have $a \downarrow b$, $g \forall a$, $g' \downarrow b$, $g \equiv g'$
So $\exists g'' \downarrow a, b$ st. $ag'', bg'' \neq p$.
By previous argument: $ag'' \downarrow a$.
 $g'' \forall a, b \Rightarrow g'' \downarrow b \Rightarrow ag'' \downarrow b \Rightarrow ag'' \forall a, b$
 $\equiv) ag''' \downarrow ba^{-1}$
So $ba^{-1} \in S(p)$
Therefore $St = b(p) := S(p)^{-2}$ is a group and
 $S(p)$ contains all of its generics.

With the previous assumptions (ie p is a Lstp/7), is generic ⊖[G: Stab(p)] < 00 ⊖ Stab(p)=Gg. þ Assume that p is generic. () ⇒ (2): Let $g_{j}g' \neq p$ st. $g \downarrow g'$. Then $g'g' \downarrow q \Rightarrow g'g' \in S(p) \leq Stab(p)$. Also g'q' is generic for G. So Stable) contains a generic so), Stable) > Gbddy. = Gg. (from exercise). Since p is a Lstp and Go has boundedly many right cosets. p(x) says in which right coset of G& x lies. Therefore, if a t S(p) then a = (aq) ·g ' E Gp. So $st_{1}b(p) < G_{0} = 3 - step Stab(p) = G_{0}$ (2) =) (3) (3) =>(1) stab(p) has bounded index it contains <u>1</u>]... a generic of G, call it h.

T

A

R

N

D)

M

Ŵ

MT.

M

63

\$

S,

Then h is also a genuric of
$$Stab(p) \Rightarrow h \in S(p)$$
.
So $\exists g \lor h$ st. g, hg $\models p$.
Since h is genuric, hg is genuric $\Rightarrow p$ is generic.
Assume T is stable.
Lemma Gip has a unique genuric type $\neq a$.
Proof Assume not. Then the same is three over $bdd \phi$.
So we may assume we work over $bdd \phi$.
Use p. q be two generic types of G_{ϕ}^{a} .
Then $Stab(p) = Stab(q) = G_{\phi}^{a}$.
So $p(x) \vdash z \in S(q)$ (since p is generic type of
and $q(x) \vdash z \in S(p)$.
Therefore $\exists g \models p$ and $h \models q$ st. $g \lor h$ and $gh \models q$.
So for all $g \models p$ $h \models q$ if $g \downarrow h \Rightarrow gh \models q$.
Similarly: let $p^{-1} = tp(q^{-1})$ where $g \models p$ &
 $q^{-1} = tp(h^{-1})$ (h) fq).

By since argument for all
$$h \neq q \neq g \neq p$$

namely for all $h^{i} \neq q^{-1} \notin g^{-i} \neq p^{-1}$ then
 $g^{-1} \perp h^{-1} \quad h^{i} g^{-1} \neq p^{-1}$
 $g^{i} \perp h^{-1} \quad h^{-1} g^{-1} \neq p^{-1}$
 $h^{i} = q^{-1} \quad so \quad p = q \quad \square$
 $h^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = q^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = q^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = h^{i} \quad g^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = h^{i} \quad h^{i} = q^{i} = q^{i} \quad so \quad p = q \quad \square$
 $h^{i} = h^{i} \quad h^{i} = q^{i} = q^{i} \quad h^{i} = q^{i} \quad h^{i} = q^{i} = q^{i} \quad h^{i} = q^{i} = q^{i} \quad h^{i} = q^{i} \quad h^{i} = h^{i} \quad h^{i} = q^{i} = q^{i} \quad h^{i} = h^{i} \quad h^{i} = q^{i} \quad h^{i} = h^{i} \quad h^{i} = h^{i} \quad h^{i} = h^{i} \quad h^{i} = q^{i} \quad h^{i} = h^{i} \quad h^{i} \quad h^{i} = h^{i} \quad h^{i} = h^{i} \quad h^{i} = h^{i} \quad h^{i} = h^{i}$

•

jt.

S

T.

T

CM

Ør

OM[®]

())

Ø

Ŵ

67

M

F

(†

8

ø

ø

8

S

\$

\$

s.

\$

\$

5

Ť

(*

į

į

Let
$$a \in G_{\varphi}^{\circ}$$
. Let g be generic for G_{φ}° $(g \neq q)$,
and $g \downarrow q, A$.
Then $g \neq p$. Now $g \downarrow a, A \Rightarrow ag \downarrow A$
 $\Rightarrow ag \downarrow a A$
and ag is generic for $G_{\varphi}^{\circ} \Rightarrow ag \neq q \Rightarrow ag \neq p$.
So $g_{2} ag \neq p \Rightarrow a = (ag_{2}) \cdot g^{-1} \in G_{A}^{\circ}$.
 $prover Now Antroposa (\notin :)$ let $g \neq p$. If G is action where G_{φ}° since:
 $f \Rightarrow f = g_{1}^{\circ} + g_{2}^{\circ} + g_{2}^{\circ} + g_{3}^{\circ} + g_{4}^{\circ} = g_{4}^{\circ} + g_{4}^{\circ}$