Chapter 9

Gauss Map II

9.1 Mean and Gaussian Curvatures of Surfaces in \mathbb{R}^{3}

We'll assume that the curves are in \mathbb{R}^{3} unless otherwise noted. We start off by quoting the following useful theorem about self adjoint linear maps over \mathbb{R}^{2} :

Theorem 9.1.1 (Do Carmo pp. 216). : Let V denote a two dimensional vector space over \mathbb{R}. Let $A: V \rightarrow V$ be a self adjoint linear map. Then there exists an orthonormal basis e_{1}, e_{2} of V such that $A\left(e_{1}\right)=\lambda_{1} e_{1}$, and $A\left(e_{2}\right)=$ $\lambda_{2} e_{2}$ (that is, e_{1} and e_{2} are eigenvectors, and λ_{1} and λ_{2} are eigenvalues of $A)$. In the basis e_{1}, e_{2}, the matrix of A is clearly diagonal and the elements λ_{1}, $\lambda_{2}, \lambda_{1} \geq \lambda_{2}$, on the diagonal are the maximum and minimum, respectively, of the quadratic form $Q(v)=\langle A v, v\rangle$ on the unit circle of V.

Proposition 9.1.2. : The differential $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ of the Gauss map is a self-adjoint linear map.

Proof. Since $d N_{p}$ is linear, it suffices to verify that $\left\langle d N_{p}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, d N_{p}\left(w_{2}\right)\right\rangle$ for a basis w_{1}, w_{2} of $T_{p}(S)$. Let $x(u, v)$ be a parametrization of S at P
and x_{u}, x_{v} be the associated basis of $T_{p}(S)$. If $\alpha(t)=x(u(t), v(t))$ is a parametrized curve in S with $\alpha(0)=p$, we have

$$
\begin{align*}
d N_{p}\left(\alpha^{\prime}(0)\right) & =d N_{p}\left(x_{u} u^{\prime}(0)+x_{v} v^{\prime}(0)\right) \tag{9.1}\\
& =\left.\frac{d}{d t} N(u(t), v(t))\right|_{t=0} \tag{9.2}\\
& =N_{u} u^{\prime}(0)+N_{v} v^{\prime}(0) \tag{9.3}
\end{align*}
$$

in particular, $d N_{p}\left(x_{u}\right)=N_{u}$ and $d N_{p}\left(x_{v}\right)=N_{v}$. Therefore to prove that $d N_{p}$ is self adjoint, it suffices to show that

$$
\begin{equation*}
\left\langle N_{u}, x_{v}\right\rangle=\left\langle x_{u}, N_{v}\right\rangle . \tag{9.4}
\end{equation*}
$$

To see this, take the derivatives of $\left\langle N, x_{u}\right\rangle=0$ and $\left\langle N, x_{v}\right\rangle=0$, relative to v and u respectively, and obtain

$$
\begin{align*}
& \left\langle N_{v}, x_{u}\right\rangle+\left\langle N, x_{u v}\right\rangle=0, \tag{9.5}\\
& \left\langle N_{u}, x_{v}\right\rangle+\left\langle N, x_{u v}\right\rangle=0, \tag{9.6}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left\langle N_{u}, x_{v}\right\rangle=-\left\langle N, x_{u v}\right\rangle=\left\langle N_{v}, x_{u}\right\rangle \tag{9.7}
\end{equation*}
$$

Now given that $d N_{p}$ is self-adjoint one can think of the associated quadratic form.

Definition 9.1.3. The quadratic form $I I_{p}$ defined in $T_{p}(S)$ by $I I_{p}(v)=$ $-\left\langle d N_{p}(v), v\right\rangle$ is called the second fundamental form of S at p.

Now that we have two definitions for the second fundamental form we better show that they're equivalent. (Recall from the last lecture that $I I_{p}\left(\alpha^{\prime}(0)\right)=$ $\left\langle N(0), \alpha^{\prime \prime}(0)\right\rangle$ where α is considered as a function of arc length.)

Let $N(s)$ denote the restriction of normal to the curve $\alpha(s)$. We have $\left\langle N(s), \alpha^{\prime}(s)\right\rangle=0$ Differentiating yields

$$
\begin{equation*}
\left\langle N(s), \alpha^{\prime \prime}(s)\right\rangle=-\left\langle N^{\prime}(s), \alpha^{\prime}(s)\right\rangle . \tag{9.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
I I_{p}\left(\alpha^{\prime}(0)\right) & =-\left\langle d N_{p}\left(\alpha^{\prime}(0)\right), \alpha^{\prime}(0)\right\rangle \\
& =-\left\langle N^{\prime}(0), \alpha^{\prime}(0)\right\rangle \tag{9.9}\\
& =\left\langle N(0), \alpha^{\prime \prime}(0)\right\rangle
\end{align*}
$$

which agrees with our previous definition.
Definition 9.1.4. : The maximum normal curvature k_{1} and the minimum normal curvature k_{2} are called the principal curvatures at p; and the corresponding eigenvectors are called principal directions at p.

So for instance if we take cylinder $k_{1}=0$ and $k_{2}=-1$ for all points p.
Definition 9.1.5. : If a regular connected curve C on S is such that for all $p \in C$ the tangent line of C is a principal direction at p, then C is said to be a line of curvature of S.

For cylinder a circle perpendicular to axis and the axis itself are lines of curvature of the cylinder.

Proposition 9.1.6. A necessary and sufficient condition for a connected regular curve X on S to be a line of curvature of S is that

$$
N^{\prime}(t)=\lambda(t) \alpha^{\prime}(t)
$$

for any parametrization $\alpha(t)$ of C, where $N(t)=N(\alpha(t))$ and λ is a differentiable function of t. In this case, $-\lambda(t)$ is the principal curvature along $\alpha^{\prime}(t)$

Proof. : Obvious since principal curvature is an eigenvalue of the linear transformation N^{\prime}.

A nice application of the principal directions is computing the normal curvature along a given direction of $T_{p}(s)$. If e_{1} and e_{2} are two orthogonal eigenvectors of unit length then one can represent any unit tangent vector as

$$
\begin{equation*}
v=e_{1} \cos \theta+e_{2} \sin \theta \tag{9.10}
\end{equation*}
$$

The normal curvature along v is given by

$$
\begin{align*}
I I_{p}(v) & =-\left\langle d N_{p}(v), v\right\rangle \tag{9.11}\\
& =k_{1} \cos ^{2} \theta+k_{2} \sin ^{2} \theta
\end{align*}
$$

Definition 9.1.7. Let $p \in S$ and let $d N_{p}: T_{p}(S) \rightarrow T_{p}(S)$ be the differential of the Gauss map. The determinant of $d N_{p}$ is the Gaussian curvature K at p. The negative of half of the trace of $d N_{p}$ is called the mean curvature H of S at p.

In terms of principal curvatures we can write

$$
\begin{equation*}
K=k_{1} k_{2}, H=\frac{k_{1}+k_{2}}{2} \tag{9.12}
\end{equation*}
$$

Definition 9.1.8. : A point of a surface S is called

1. Elliptic if $K>0$,
2. Hyperbolic if $K<0$,
3. Parabolic if $K=0$, with $d N_{p} \neq 0$
4. Planar if $d N_{p}=0$

Note that above definitions are independent of the choice of the orientation.

Definition 9.1.9. Let p be a point in S. An asymptotic direction of S at p is a direction of $T_{p}(S)$ for which the normal curvature is zero. An asymptotic curve of S is a regular connected curve $C \subset S$ such that for each $p \in C$ the tangent line of C at p is an asymptotic direction.

9.2 Gauss Map in Local Coordinates

Let $x(u, v)$ be a parametrization at a point $p \in S$ of a surface S, and let $\alpha(t)=x(u(t), v(t))$ be a parametrized curve on S, with $\alpha(0)=p$ To simplify the notation, we shall make the convention that all functions to appear below denote their values at the point p.

The tangent vector to $\alpha(t)$ at p is $\alpha^{\prime}=x_{u} u+x_{v} v$ and

$$
\begin{equation*}
d N\left(\alpha^{\prime}\right)=N^{\prime}(u(t), v(t))=N_{u} u^{\prime}+N_{v} v^{\prime} \tag{9.13}
\end{equation*}
$$

Since N_{u} and N_{v} belong to $T_{p}(S)$, we may write

$$
\begin{align*}
& N_{u}=a_{11} x_{u}+a_{21} x_{v} \tag{9.14}\\
& N_{v}=a_{12} x_{u}+a_{22} x_{v}
\end{align*}
$$

Therefore,

$$
d N=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

with respect to basis $\left\{x_{u}, x_{v}\right\}$.
On the other hand, the expression of the second fundamental form in the basis $\left\{x_{u}, x_{v}\right\}$ is given by

$$
\begin{align*}
I I_{p}\left(\alpha^{\prime}\right) & =-\left\langle d N\left(\alpha^{\prime}\right), \alpha^{\prime}\right\rangle \tag{9.15}\\
& =e\left(u^{\prime}\right)^{2}+2 f u^{\prime} v^{\prime}+g\left(v^{\prime}\right)^{2}
\end{align*}
$$

where, since $\left\langle N, x_{u}\right\rangle=\left\langle N, x_{v}\right\rangle=0$

$$
\begin{align*}
& e=-\left\langle N_{u}, x_{u}\right\rangle=\left\langle N, x_{u u}\right\rangle \tag{9.16}\\
& f=-\left\langle N_{v}, x_{u}\right\rangle=\left\langle N, x_{u v}\right\rangle=\left\langle N, x_{v u}\right\rangle=-\left\langle N_{u}, x_{v}\right\rangle \tag{9.17}\\
& g=-\left\langle N_{v}, x_{v}\right\rangle=\left\langle N, x_{v v}\right\rangle \tag{9.18}
\end{align*}
$$

From eqns. (11), (12) we have

$$
-\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)
$$

From the above equation we immediately obtain

$$
\begin{equation*}
K=\operatorname{det}\left(a_{i j}\right)=\frac{e g-f^{2}}{E G-F^{2}} \tag{9.19}
\end{equation*}
$$

Formula for the mean curvature:

$$
\begin{equation*}
H=\frac{1}{2} \frac{s G-2 f F+g E}{E G-F^{2}} \tag{9.20}
\end{equation*}
$$

Exercise 3. Compute H and K for sphere and plane.
Example 6. Determine the asymptotic curves and the lines of curvature of the helicoid $x=v \cos u, y=v \sin u, z=c u$ and show that its mean curvature is zero.

