MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 24

DENIS AUROUX
0.1. General Approach to Special Lagrangian Fibrations. The idea is to degenerate X to a union of toric varieties, build a degenerate fibration there, and try to smooth it: the approach is due to Haase-Zharkov, WD Ruan, GrossSiebert, etc. This is a special type of LCSL. We first sketch this in the K3 case: as last time,

$$
\begin{equation*}
X_{\lambda}=\left\{P_{\lambda}=x_{0} x_{1} x_{2} x_{3}+\lambda P_{4}\left(x_{0}: \cdots: x_{3}\right)=0\right\} \subset \mathbb{C P}^{3} \tag{1}
\end{equation*}
$$

with $\omega_{\lambda}=\left.\omega_{\mathbb{C P}^{3}}\right|_{X_{\lambda}}, \Omega_{\lambda}=\operatorname{res}_{X_{\lambda}}\left(\frac{d x_{1} d x_{2} d x_{3}}{P_{\lambda}}\right)$. As $\lambda \rightarrow 0$, this degenerates to X_{0}, a union of $4 \mathbb{C P}^{2} \mathrm{~s}$, with ω_{0} the standard form on each component and $\Omega_{0}=\prod \frac{d x_{i}}{x_{i}}$. Now, we find that $\left\{\left|x_{i}\right|=\right.$ constants $\}$ are special Lagrangian (looking at $T^{2} \subset$ $\mathbb{C P}^{2}$), but they degenerate to S^{1} at the edges and points at the vertices.

We would like to smooth this for $\lambda \neq 0$ small. The model in dimension 1 is as follows: we smooth $\{x y=0\} \subset \mathbb{C}^{2}$ to $\{x y=\lambda\}$, and $\Omega=\frac{d x}{x}=-\frac{d y}{y}$ gives that $|x|=$ const, $|y|=$ const are special Lagrangian tori. In dimension one higher, we model along the edge ($|z|=$ const gives S_{z}^{1} times this model) except that we perturb $x y=0$ to $x y+\lambda P_{4}(z)=0$. The four roots of P_{4} give 4 singularities of the T^{2} fibration on each edge of the torus, giving S^{2} an affine structure on $S^{2} \backslash\{24$ points $\}$. This same procedure holds in greater generality, and gives affine structures and a way of building a candidate mirror (Gross-Siebert). However, it is not clear if the affine manifold built this way is the base of a special Lagrangian fibration (probably not, according to [Joyce]).
0.2. Landau-Ginzburg models and non-Calabi Yau manifolds. Our motivating example is the mirror symmetry between $\mathbb{C P}^{1}$ and $\left(\mathbb{C}^{*}, W=z+\frac{1}{z}\right)$. A Landau-Ginzburg model is a noncompact Kähler manifold and a holomorphic function W (the "superpotential"), which measures the obstruction to being Calabi-Yau and affects the geometric interpretation of mirror symmetry. The general idea is that the geometry of X corresponds to the geometry of the critical points of W in X^{\vee}.

Returning to our example, we start with \mathbb{C}^{*} with any $\omega, \Omega=\frac{d z}{z}$ (an open Calabi Yau): we have a special Lagrangian fibration by circles $S^{1}(r)=\{|z|=r\}$ with base \mathbb{R}. Dualizing gives back \mathbb{C}^{*}, and mirror symmetry works well as in SYZ (e.g. $\left.\operatorname{HF}\left(L_{p}, L_{p}\right) \cong H^{*}\left(S^{1}, \mathbb{C}\right) \cong \operatorname{Ext}^{*}\left(\mathcal{O}_{p}, \mathcal{O}_{p}\right)\right)$. However, we need to
incorporate the noncompact Lagrangians [Seidel's "wrapped Fukaya category": we perturb by a rotation at ∞, obtaining $H W^{*}\left(L_{0}, L_{0}\right) \cong \mathbb{C}\left[t^{ \pm 1}\right] \cong \operatorname{Hom}(\mathcal{O}, \mathcal{O})$ (holomorphic functions over \mathbb{C}^{*})].

Now we look at $\mathbb{C P}^{1}=\mathbb{C}^{*} \cup\{0, \infty\}$, with standard $\omega, \Omega=\frac{d z}{z}$ (with poles at 0 and $\infty)$. We can still consider a family of special Lagrangian circles, but typically $H F^{*}(L, L)=0$ gives the zero object in the bounded derived Fukaya category. Furthermore, the Floer homology is obstructed, as the circles bound disks: recall that, when L, L^{\prime} bound disks, ∂ on $C F\left(L, L^{\prime}\right)$ squares to $\partial^{2}(a)=m_{0}^{\prime} \cdot a-a \cdot m_{0}$,

$$
\begin{equation*}
m_{0}=\sum_{\beta \in \pi_{2}(X, L)} \operatorname{ev}_{*}\left[\overline{\mathcal{M}}_{1}(X, L ; J, \beta)\right] T^{\omega(\beta)} \operatorname{hol}_{\nabla}(\partial \beta) \in C F(L, L) \tag{2}
\end{equation*}
$$

These features of Floer homology are encoded in the superpotential, namely if $X=\mathbb{C P}^{1}$ is a Kähler manifold, $D=\{0, \infty\}$ the anticanonical divisor (so $\left.s_{D} \in H^{0}\left(K_{X}^{-1}\right)\right), \Omega=s_{D}^{-1} \in H^{0}\left(X \backslash D, K_{X}\right)$ where $\Omega=\frac{d z}{z}$ on \mathbb{C}^{*}, then

$$
\begin{equation*}
M=\{(L, \nabla) \mid L \text { special Lagr. torus in } X \backslash D, \nabla \text { flat } U(1)-\text { connection }\} \tag{3}
\end{equation*}
$$

is the SYZ mirror to the almost-Calabi-Yau manifold $X \backslash D$. For $L \subset X \backslash D$ special Lagrangian, $\beta \in \pi_{2}(X, L)$ has Maslov index $\mu(\beta)=2(\beta \cdot D)$. Note that s_{D} gives a trivialization of $\operatorname{det}(T M)$ away from D. Now, the expected dimension of $\overline{\mathcal{M}}(x, L, J, \beta)=n-3+\mu(\beta)$: in our case, the positivity of the intersection implies that $\mu(\beta) \geq 0$ for holomorphic disks.

Assume that there do not exist nonconstant $\mu=0$ holomorphic disks in (X, L), i.e all disks hit D. This is ok for $\mathbb{C P}^{1}$, as the maximum principle implies that there are no disks in $\left(\mathbb{C}^{*}, S^{1}(r)\right)$. Assume further that $\mu=2$ disks (which hit D once) are regular, which is also ok for $\mathbb{C P}^{1}$. These two assumptions are also ok for toric Fano manifolds, e.g. products of $\mathbb{C P}^{n}$ s. Then $\mu=2$ moduli spaces are compact (there is no bubbling of disks) of dimension $n-1$. We can define $n_{\beta}=\operatorname{deg}\left(\operatorname{ev}_{0 *}\left[\overline{\mathcal{M}}_{1}(\beta)\right]\right)$ to be the number of holomorphic disks in the class β where the boundary contains a generic point in L.

Definition 1.

$$
\begin{equation*}
\omega(L, \nabla)=\sum_{\substack{\beta \in \pi_{2}(X, L) \\ \\ \mu(\beta)=2}} n_{\beta} z_{\beta}(L, \nabla) \tag{4}
\end{equation*}
$$

where $z_{\beta}=e^{-2 \pi \int_{\beta} \omega} \operatorname{hol}_{\partial \beta}(\nabla)$.
In our example, the Lagrangian L bounds two $\mu=2$ disks D and D^{\prime} centered at $0, \infty$ respectively: D contributes z while D^{\prime} contributes z^{\prime}, and the two are related by

$$
\begin{equation*}
[D]+\left[D^{\prime}\right]=\left[\mathbb{C P}^{1}\right] \Longrightarrow z z^{\prime}=e^{-2 \pi \int_{\mathrm{CP}^{1}} \omega}=e^{-\Lambda} \tag{5}
\end{equation*}
$$

Hence $W=z+z^{\prime}=z+\frac{e^{-\Lambda}}{z}$.
Homological mirror symmetry provides two isomorphisms

$$
\begin{align*}
& D^{\pi} \operatorname{Fuk}\left(\mathbb{C P}^{1}\right) \cong H^{0} M F(W) \\
& D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right) \cong D^{b} \operatorname{Fuk}\left(\mathbb{C}^{*}, W\right) \tag{6}
\end{align*}
$$

with matrix factorizations and "Fukaya-Seidel" category respectively. The first one explains our construction of the mirror. The Fukaya category is actually a collection indexed by "charge" $\lambda \in \mathbb{C}$, and $\operatorname{Fuk}\left(\mathbb{C P}^{1}, \lambda\right)$ is the set of weakly unobstructed Lagrangians with $m_{0}=\lambda \cdot[L]$. This is an honest A_{∞}-category, as the m_{0} 's cancel and the Floer differential squares to zero, whereas from λ to λ^{\prime} we'd have $\partial^{2}=\lambda^{\prime}-\lambda$. For instance, for $L \cong S^{1},(L, \nabla)$ is weakly unobstructed, with $m_{0}=W(L, \nabla) \cdot[L]$. However, $H F(L, L)=0$ unless L is the equator and $\operatorname{hol}(\nabla)= \pm$ id. For $p \in L$,
$\partial([p])=z \cdot \operatorname{ev}_{0 *}\left(\left[\mathcal{M}_{2}(L,[D])\right] \cap \operatorname{ev}_{1}^{-1}(p)\right)+z^{\prime} \cdot \operatorname{ev}_{0 *}\left(\left[\mathcal{M}_{2}\left(L,\left[D^{\prime}\right]\right)\right] \cap \operatorname{ev}_{1}^{-1}(p)\right)=z \cdot[L]-z^{\prime} \cdot[L]$
Hence the unit $[L]$ is in the image of ∂ unless $z=\frac{e^{-\Lambda}}{z}$, i.e. $z= \pm e^{-\Lambda / 2}$, i.e. L is the equator. In this case, the contributions of pairs of symmetric disks cancel exactly, and $H F^{*}(L, L) \cong H^{*}\left(S^{1} ; \mathbb{C}\right)$ as a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space. However, the product structure is deformed, as $m_{2}([p],[p])= \pm e^{\Lambda / 2}[1]$, i.e. multiplicatively $H F^{*}(L, L) \cong \mathbb{C}[t] / t^{2}= \pm e^{-\Lambda / 2}$.

