MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 20

DENIS AUROUX

1. Homological Mirror Symmetry (cntd.)

Last time, we studied homological mirror symmetry on T^{2} (with area form $\lambda)$ on the one hand and $\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}, \tau=i \lambda$ on the other. Lagrangians of slope (p, q) with a $U(1)$ flat connection correspond to vector bundles of rank p and degree $-q$ (for $(p, q)=(0,-1)$, this gives skyscraper sheaves). We showed that m_{2} corresponds to theta functions and to sections and products.
1.1. Massey Products. We consider these in the special case of a triangulated category \mathcal{D}, and consider objects and morphisms $X_{1} \xrightarrow{f} X_{2} \xrightarrow{g} X_{3} \xrightarrow{h} X_{4}$ where $g \circ f=0, h \circ g=0$. Assume that $\operatorname{hom}\left(X_{1}, X_{3}[-1]\right)=\operatorname{hom}\left(X_{2}, X_{4}[-1]\right)=0$. Then $m_{3}(h, g, f) \in \operatorname{hom}\left(X_{1}, X_{4}[-1]\right)$. Let K be s.t. $K \rightarrow X_{2} \xrightarrow{g} X_{3} \xrightarrow{[1]} K[1]$ is a distinguished triangle (i.e. $K[1]=\operatorname{Cone}(g))$. Then $g \circ f=0 \Longrightarrow f$ factors through $X_{1} \xrightarrow{\bar{f}} K \rightarrow X_{2}$, where $\bar{f} \in \operatorname{hom}\left(X_{1}, K\right)$ comes from

$$
\begin{equation*}
\operatorname{hom}\left(X_{1}, X_{3}[-1]\right) \rightarrow \operatorname{hom}\left(X_{1}, K\right) \rightarrow \operatorname{hom}\left(X_{1}, X_{2}\right) \xrightarrow{g} \operatorname{hom}\left(X_{1}, X_{3}\right) \tag{1}
\end{equation*}
$$

Similarly, $h \circ g=0 \Longrightarrow h$ factors through $X_{3} \rightarrow K[1] \xrightarrow{\bar{h}} X_{4}$, and we define

$$
\begin{equation*}
m_{3}(h, g, f):=\bar{h}[-1] \circ \bar{f}: X_{1} \xrightarrow{\bar{f}} K \xrightarrow{\bar{h}[-1]} X_{4}[-1] \tag{2}
\end{equation*}
$$

Now, let's say that we had f, g, h in the A_{∞} category of twisted complexes, $K=\left\{X_{2} \xrightarrow{g} X_{3}[-1]\right\}$,

and $m_{2}^{\mathrm{Tw}}(\bar{h}[-1], \bar{f})=m_{3}(h, g, f)$. If we add an extra step

then we get
$m_{3}(h, g, f)=m_{3}\left(h, m_{1}(e), f\right)=m_{2}\left(h, m_{2}(e, f)\right)+$ other terms which vanish
Now, let $\mathcal{L} \rightarrow X^{\vee}$ be a nontrivial degree 0 holomorphic line bundle over an elliptic curve, p, q generic points. Then the pairwise compositions in

$$
\begin{equation*}
\mathcal{O} \xrightarrow{f} \mathcal{O}_{p} \xrightarrow{g} \mathcal{L}[1] \xrightarrow{h} \mathcal{O}_{q}[1] \tag{6}
\end{equation*}
$$

vanish, and we have

$$
\begin{align*}
\operatorname{hom}\left(\mathcal{O}_{p}, \mathcal{L}[1]\right) & =\operatorname{Ext}^{1}\left(\mathcal{O}_{p}, \mathcal{L}\right) \cong \operatorname{Hom}\left(\mathcal{L}, \mathcal{O}_{p}\right)^{\vee} \\
\operatorname{hom}(\mathcal{O}, \mathcal{L}[1]) & =\operatorname{Ext}^{1}(\mathcal{O}, \mathcal{L}) \cong H^{1}(\mathcal{L})=0 \tag{7}
\end{align*}
$$

Then $K \cong \mathcal{L} \otimes \mathcal{O}(p)$ is a degree 1 line bundle, neither $\mathcal{O}(p)$ nor $\mathcal{O}(q)$: note that $\mathcal{O}(p)$ is a degree 1 line bundle with a section $s_{p}, s_{p}^{-1}(0)=\{p\}$. Then we have a long exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{L} \xrightarrow{s_{p}} \mathcal{L} \otimes \mathcal{O}(p) \rightarrow \mathcal{O}_{p} \rightarrow 0 \tag{8}
\end{equation*}
$$

giving us an exact triangle in the derived category

$$
\begin{equation*}
K=\mathcal{L} \otimes \mathcal{O}(p) \rightarrow \mathcal{O}_{p} \xrightarrow{g} \mathcal{L}[1] \xrightarrow{[1]} K[1] \tag{9}
\end{equation*}
$$

via our extension class. f should factor as a map from \mathcal{O} to K, and does via a nontrivial section \bar{f} of $K=\mathcal{L} \otimes \mathcal{O}(p)$. Moreover, for $\bar{h}[-1]$ nontrivial in $\operatorname{hom}\left(K, \mathcal{O}_{q}\right), \bar{h}[-1] \circ \bar{f} \neq 0$.

This matches with the calculation of m_{3} for the relevant Lagrangians in the Fukaya category of T^{2} : two horizontal lines and two vertical lines, bounding an infinite series of rectangles. See notes for a visual description of this.

2. Strominger-Yau-Zaslow (SYZ) Conjecture

Motivating question: how does one build a mirror X^{\vee} of a given Calabi-Yau X ? Observe that homological mirror symmetry (1994) says that $D^{b} \operatorname{Coh}\left(X^{\vee}\right) \cong$ $D^{\pi} \operatorname{Fuk}(X)$. Points $p \in X^{\vee}$ correspond to skyscraper sheaves $\mathcal{O}_{p} \in D^{b} \operatorname{Coh}\left(X^{\vee}\right)$ and $\mathcal{L}_{p} \in D^{\pi} \operatorname{Fuk}(X)$. That is, we can regard X^{\vee} as the moduli space of skyscraper sheaves in $D^{b} \mathrm{Coh}\left(X^{\vee}\right)$ as well as a moduli space of certain objects of $D^{\pi} \operatorname{Fuk}(X)$. The question reduces to understanding exactly what are these certain objects. Four lectures ago, we computed $\operatorname{Ext}^{k}\left(\mathcal{O}_{p}, \mathcal{O}_{p}\right) \cong \bigwedge^{k} V$ for V the tangent space at p. As a graded vector space, $\operatorname{Ext}^{*}\left(\mathcal{O}_{p}, \mathcal{O}_{p}\right) \cong H^{*}\left(T^{n} ; \mathbb{C}\right)$. Four lectures before that, we showd that $H F^{*}(L, L)$ is in good cases isomorphic to $H^{*}(L)$, but if L bounds disks, these are only related by a spectral sequence.
Remark. Warning: recall that in general we are dealing with Λ-coefficients. In good cases, we can set $T=e^{-2 \pi}$ and hope that we have convergence. If convergence fails, we only get a formal family near LSCL.

If (optimistically) we assume \mathcal{L}_{p} is an actual Lagrangian, then it should be a Lagrangian torus. There are not enough of these: given $T^{n} \cong L \subset X, V(L) \cong$ $T^{*} L$, one has that Lagrangian deformations of L are graphs of closed 1-forms, while Hamiltonian isotopies are graphs of exact 1 -forms. Furthermore, for T^{n}, $\operatorname{Def}_{L} \cong H^{1}(L, \mathbb{R}) \simeq \mathbb{R}^{n}$.

Now, recall the twisted Floer homology for pairs (L, ∇), with ∇ a flat $U(1)$ connection on $\mathbb{C} \rightarrow L: \nabla=d+A, A \in \Omega^{1}(L, i \mathbb{R})$. Taking this modulo gauge tranformations and exact 1 -forms, we obtain $H^{1}(L ; i \mathbb{R})$. One can hope that generic points of X^{\vee} parameterize isomorphism classes of $(L, \nabla), L \subset X$ a Lagrangian torus and $U(1)$ a flat connection.

