18.969 Topics in Geometry: Mirror Symmetry Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 18

DENIS AUROUX

1. Derived Fukaya Category

Last time: derived categories for abelian categories (e.g. $D^bCoh(X)$). This time: the derived Fukaya category. We start with an A_{∞} -category \mathcal{A} and obtain a triangulated category via "twisted complexes". Recall that in an A_{∞} -category, $\hom_{\mathcal{A}}(X,Y)$ is a graded vector space equipped with maps

(1)
$$m_k : \hom_{\mathcal{A}}(X_0, X_1) \otimes \cdots \otimes \hom_{\mathcal{A}}(X_{k-1}, X_k) \to \hom_{\mathcal{A}}(X_0, X_k)[2-k]$$

1) Additive enlargement: we define the category ΣA to be the category whose objects are finite sums $\bigoplus X_i[k_i], X_i \in \mathcal{A}, k_i \in \mathbb{Z}$ and whose maps are

(2)
$$\lim_{\Sigma \mathcal{A}} (\bigoplus_{i} X_{i}[k_{i}], \bigoplus_{j} Y_{j}[\ell_{j}]) = \bigoplus_{i,j} \hom_{\mathcal{A}} (X_{i}, Y_{j})[\ell_{j} - k_{i}]$$

Note that we have induced multiplication maps

(3)
$$m_k(a_k, \dots, a_1)^{ij} = \sum_{i_1, \dots, i_{k-1}} m_k(a_k^{i_{k-1}, j}, \dots, a_1^{i_1, j})$$

2) Twisted complexes: we define the category TwA to be the category whose objects are twisted complexes (X, δ_X) ,

(4)
$$X = \bigoplus_{i} X_{i}[k_{i}] \in \Sigma \mathcal{A}, \delta_{X} = (\delta_{X}^{ij}) \in \hom_{\Sigma \mathcal{A}}^{1}(X, X)$$

(i.e. δ_X a degree 1 endomorphism) s.t.

- δ_X is strictly lower-triangular, and
 ∑_{k=1}[∞] m_k(δ_x,...,δ_x) = 0. It is a finite sum because δ_X is lower triangular, and generalizes δ_X ∘ δ_X = 0.

Example. For a simple map $f: X_1 \to X_2, f \in \hom^1_{\mathcal{A}}(X_1, X_2)$, the condition is $m_1(f) = 0$. Now, for maps $X_1[2] \xrightarrow{f} X_2[1] \xrightarrow{g} X_3$ and $X_1[2] \xrightarrow{h} X_3$,

$$g \in \hom^0(X_2, X_3) = \hom^1(X_2[1], X_3)$$

(5)
$$f \in \hom^0(X_1[1], X_2[1]) = \hom^1(X_1[2], X_2[1])$$

 $h \in \hom^{-1}(X_1, X_3) = \hom^1(X_1[2], X_3)$

the condition is $m_1(f) = m_1(g) = 0$ and $m_2(g, f) + m_1(h) = 0$.

DENIS AUROUX

The morphisms in the category of twisted complexes are

(6)
$$\hom_{\mathrm{Tw}\mathcal{A}}((X,\delta_X),(Y,\delta_Y)) = \hom_{\Sigma\mathcal{A}}(X,Y)$$

and

 $\mathbf{2}$

(7)
$$m_{k}^{\mathrm{Tw}\mathcal{A}}(a_{k},\ldots,a_{1}) = \sum_{i_{0},\ldots,i_{k}} \pm m_{k+i_{0}+\cdots+i_{k}}^{\Sigma\mathcal{A}}(\underbrace{\delta_{X_{k}},\ldots,\delta_{X_{k}}}_{i_{k}},a_{k},\underbrace{\delta_{X_{k-1}},\ldots,\delta_{X_{k-1}}}_{i_{k-1}},\ldots,\underbrace{\delta_{X_{1}},\ldots,\delta_{X_{1}}}_{i_{1}},a_{1},\underbrace{\delta_{X_{0}},\ldots,\delta_{X_{0}}}_{i_{0}})$$

Tw \mathcal{A} is a *triangulated* A_{∞} -category, i.e. there are mapping cones satisfying the usual axioms.

Example. For $a \in hom(X, Y)$,

(8)
$$m_1^{\operatorname{Tw}\mathcal{A}}(a) = m_1(a) \pm m_2(\delta_Y, a) \pm m_2(a, \delta_X) + \text{higher terms}$$

This is a generalization of being a chain map up to homotopy.

3) We now take the cohomology category $D(\mathcal{A}) := H^0(\operatorname{Tw}\mathcal{A})$, which is an honest triangulated category. The objects of the two categories are the same, but now our morphisms are $\hom^{D(\mathcal{A})}(X,Y) := H^0(\hom^{\operatorname{Tw}\mathcal{A}}(X,Y),m_1^{\operatorname{Tw}(\mathcal{A})})$. Note that $\hom^{D(\mathcal{A})}(X,Y[k]) = H^k(\hom^{\operatorname{Tw}\mathcal{A}}(X,Y),m_1^{\operatorname{Tw}\mathcal{A}})$. The composition is induced by $m_2^{\operatorname{Tw}\mathcal{A}}$ on cohomology.

Remark. There is a variant of this called a split-closed derived category. Let \mathcal{A} be a linear category, $X \in \mathcal{A}, p \in \hom_{\mathcal{A}}(X, X)$ s.t. $p^2 = p$ (idempotent). Define the image of p to be an object Y, and add maps $u : X \to Y, v : Y \to X$ s.t. $u \circ v = \operatorname{id}_Y, v \circ u = p$. That is, we enlarge \mathcal{A} to add these objects and maps, and define the split closure to be the category whose objects are (X, p) with p idempotent, and morphisms $\hom((X, p), (Y, p')) = p' \hom(X, Y)p$. This is more complicated in the \mathcal{A}_{∞} setting.

Geometrically, some exact triangles in DFuk(M) are given by Lagrangian connected sums (FOOO) and Dehn twists (Seidel).

• For an example of the latter, given a cylinder with a Lagrangian circle S, we can obtain a symplectomorphism $\tau_S \in \text{Symp}(M, \omega)$ which is the identity outside a neighborhood of S and, within that neighborhood, twists the cylinder around (in higher dimensions, define this using the geodesic flow in a neighborhood of $S \cong T^*S$). If L is Lagrangian, then $\tau_S(L)$ is Lagrangian as well. By Seidel, there exists an exact triangle in

DFuk(M):

(9)

These correspond to long exact sequences for HF(L', -).

- In the former situation, for L₁, L₂ (graded) Lagrangians, L₁ ∩ L₂ = {p} of index 0, we can construct the connected sum L₁#_pL₂, which looks locally like τ_{L1}(L₂) if L₁ is a sphere and is given by Cone(L₁ → L₂) in general (consider this vs. "L₁[1] ∪_p L₂ ≃ Cone(L₁ → L₂)"). For instance, in the torus T², consider two independent loops α of degree 2 and β of degree 1, with two points of intersection p, q. Then Cone(α → β) ≃ γ₁ ⊕ γ₂ is disconnected, where γ₁, γ₂ are degree 1 loops. If we only started with α, β, the triangulated envelope contains γ₁ ⊕ γ₂, but not γ₁, γ₂ separately. The split-closure does contain them.
- Now, if we start with two independent generators of the torus, successive Dehn twists give all the homotopy classes of loops in T^2 , but each homotopy class contains infinitely many non-Hamiltonian isotopic Lagrangians. To generate $D\operatorname{Fuk}(T^2)$ as a triangulated envelope, we need (for instance) one horizontal loop and infinitely many vertical loops. On the other hand, α, β above are split generators. The key point is that $\operatorname{Cone}(\alpha \xrightarrow{p+T^{q}q} \beta)$ gives deformed loops, direct sums of which vary continuously within a homotopy class. But many cones and idempotents have no obvious geometric interpretation. For instance, the Clifford torus $T = \{|x| = |y| = |z|\} \subset \mathbb{CP}^2$ has idempotents in HF(T,T) without any obvious geometric interpretation.