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MIRROR SYMMETRY: LECTURE 16 

DENIS AUROUX 

0.1. Coherent Sheaves on a Complex Manifold (contd.) Let X be a com
plex manifold, OX the sheaf of holomorphic functions on X. Recall that the 
category of sheaves has both an internal H om (which is a sheaf) and an exter
nal Hom (the group of global sections for the former). A functor F : C → C� is 
left exact if 0 A B C 0 = 0 F (A) F (B) F (C). If the → → → → ⇒ → → →
category C has enough injectives (objects such that HomC (−, I) is exact), there 
are right-derived functors RiF s.t. 

(1) 0 F (A) F (B) F (C) R1F (A) R1F (B) R1F (C)→ → → → → → → · · · 

To compute RiF (A), resolve A by injective objects as 0 A I0 I1 → → → →
I2 we get a complex 0 F (I0) F (I1) F (I2) Taking → · · · , → → → → · · · . 
cohomology gives RiF (A) = Ker (F (I i) F (I i+1))/im (F (I i−1) F (I i)). 
Note that R0F (A) = F (A). 

→ → 

We stated last time that sheaf cohomology arises as the right-derived functor of 
the global sections functor. Moreover, since Hom(E , −) and Hom(−, E) are both 
left-exact (the first covariant, the second contravariant), we can define Exti = 
RiHom, and short exact sequences 0 → F1 → F2 → F3 → 0 give 

(2) 
0 → Hom(E , F1) → Hom(E , F2) → Hom(E , F3) 

→ Ext(E , F1) → Ext(E , F2) → Ext(E , F3) → · · · 

while sequences 0 → E1 → E2 → E3 → 0 give 

(3) 
0 → Hom(E3, F) → Hom(E2, F) → Hom(E1, F) 

→ Ext(E3, F) → Ext(E2, F) → Ext(E1, F) → · · · 

Moreover, if E is a locally free sheaf, H om(E , −) is exact, and Exti(E , F) = 
H i(H om(E , F)). Otherwise, we can resolve E by locally free sheaves 

(4) 0 → En → · · · → E0 → E → 0 

and, for all practical purposes, replace E by the complex En E0. In→ · · · → 
our case, we obtain a sequence H om(E0, F) H om(En, F) whose 
hypercohomology gives Ext∗(E , F). 

→ · · · → 
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Example. Let E be a locally free sheaf, Op the skyscraper sheaf at a point p. 
Then H om(E , Op) ∼ E∗| is the skyscraper sheaf with stalk Ep 

∗ at p. Taking = p 

sheaf cohomology gives Hom(E , Op) ∼ p , Exti(E , Op= E∗ ) = 0 ∀ i ≥ 1. Furthermore, 
H om(Op, Op) ∼ : to obtain the higher Ext groups, we resolve Op by locally = Op

free sheaves. (WLOG) Assuming X is affine, local coordinates near p define a 
section s of O⊕n = V (n = dim X) vanishing transversely at p. We then have a X 

∼
long exact sequence 

�n n−1

(5) 0 V ∗ s 
V ∗ s s 

V ∗ s	
0→ → → · · · → → OX → Op → 

Applying H om(−, Op), we get 

n−1 �� n

(6)	 0 0 0 0 Op → V ⊗Op → · · · → V ⊗Op → V ⊗Op 

(the maps are all zero, since all the sheaves are all skyscraper sheaves at p). 
Ext∗(Op, Op) is the hypercohomology of this complex, i.e. 

�k k

(7)	 Extk(Op, Op) ∼ V ⊗Op) ∼ Vp = H0( = 

Similarly, Exti(Op, E) can be computed by hypercohomology of 

2	 n
s s s s(8) E → → V ⊗ E → V ⊗ E → · · · → V ⊗ E 

which is the Koszul resolution of the skyscraper sheaf with stalk n V ⊗ E 
at p. This sequence is exact except in the last place, and the cokernel is a 
skyscraper sheaf with stalk n ⊗E at p.	 = ( n V ⊗ E)pThus, Extn(Op, E) ∼ with 
all other groups zero. This is consistent with the Serre duality Exti(E , F) ∼= 
Extn−i(F , KX ⊗ E)∨. 

0.2. Derived Categories. The general idea is to work with complexes up to 
homotopy. 

•	 Enlarging a category to include complexes makes it algebraically nicer 
(e.g. the derived category is triangulated) and less sensitive to the ini
tial set of objects (we can restrict to a nice subcategory). For instance, 
for Fukaya categories, one can hope to allow objects like immersed La
grangians implicitly. 

•	 Even if we know how to define general objects, it is usually easier to 
replace them with complexes of nice objects. For instance, for s 

s 
∈

H0(L), D = s−1(0), we can exchange OD with the complex {L−1 → OX }. 
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Example. This makes it easier to perform intersection theory: for D1, D2 

defined by sections s1, s2 of L1, L2, their homological intersection is 

(9) [D1] · [D2] = c1(L1) ∪ c1(L2) ∩ [X] = c1(L1| ) · [D2]D2 

If D1 and D2 intersect transversely, OD1∩D2 = OD1 ⊗ OD2 . We can also 
resolve this using the associated complex, i.e. apply −⊗OD2 to {L−1 1 s1 →

s1|D2 OX }, obtaining {L−1 1|D2 → OD2 }. If D1 = D2 = D, OD ⊗OD = OD is 
“too big” (because ⊗ is right exact but not exact). Using the associated 

s|D =0 
complex still works, however, as we obtain {L−1| → OD} with kernel 1 D


L−1|D and cokernel OD.


•	 When do we consider two complexes to be isomorphic? Having isomorphic 
cohomology is not enough. For instance, in algebraic topology, a theorem 
of Whitehead states that, for X, Y simply connected simplicial complexes, 
X and Y are homotopy equivalent ∃ Z and simplical maps X⇔	 →
Z, Y Z s.t. the chain maps C∗(Z) C∗(X), C∗(Z) C∗(Y ) are →	 → →
isomorphisms in cohomology. 

Definition 1. A chain map f : C D (i.e. a collection of maps ∗	 → ∗ 

fiCi Di commuting with ∂) is a quasi-isomorphism if the induced →
maps on cohomology are isomorphisms. 

This is stronger than H∗(C = H∗(D∗).∗) ∼

Example. The complexes of C[x, y]-modules C[x, y]⊕2 →(x,y) C[x, y] and 
C[x, y] →0 C have the same cohomology but are not quasi-isomorphic. 




