MIT OpenCourseWare
http://ocw.mit.edu

18.969 Topics in Geometry: Mirror Symmetry

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIRROR SYMMETRY: LECTURE 6

DENIS AUROUX

1. The Quintic 3-fold and Its Mirror

The simplest Calabi-Yau's are hypersurfaces in toric varieties, especially smooth hypersurfaces X in $\mathbb{C P}^{n+1}$ defined by a polynomial of degree $d=n+2$, i.e. a section of $\mathcal{O}_{\mathbb{P}^{n+1}}(d)$. Smoothness implies that $\left.N X \xrightarrow{\sim} \mathcal{O}_{\mathbb{P}^{n+1}}(d)\right|_{X}$, defined by $v \mapsto \nabla_{v} P=d P(v)$, so $\left.T \mathbb{P}^{n+1}\right|_{X}=T X \oplus N X=\left.T X \oplus \mathcal{O}_{\mathbb{P}^{n+1}}(d)\right|_{X}$ ("adjunction"). Passing to the dual and taking the determinant, we obtain

$$
\begin{equation*}
\left.\Omega^{n+1}{\mid \mathbb{P}^{n+1}}^{\left.\right|_{X}} \cong \Omega_{X}^{n} \otimes \mathcal{O}_{\mathbb{P}^{n+1}}(-d)\right|_{X} \tag{1}
\end{equation*}
$$

Now:

$$
\begin{equation*}
T_{\ell} \mathbb{P}^{n+1} \oplus \mathbb{C}=\operatorname{Hom}\left(\ell, \ell^{\perp}\right) \oplus \operatorname{Hom}(\ell, \ell)=\operatorname{Hom}\left(\ell, \mathbb{C}^{n+2}\right)=\operatorname{Hom}\left(\mathcal{O}(-1)_{\ell}, \mathbb{C}^{n+2}\right) \tag{2}
\end{equation*}
$$

implying that $T \mathbb{P}^{n+1} \oplus \mathcal{O} \cong \mathcal{O}(1)^{n+2}$. Again, passing to the dual and taking the determinant, we obtain

$$
\begin{equation*}
\Omega_{\mathbb{P}^{n+1}}^{n+1} \otimes \mathcal{O} \cong \mathcal{O}(-1)^{\otimes(n+2)}=\mathcal{O}(-(n+2)) \tag{3}
\end{equation*}
$$

We finally have

$$
\begin{equation*}
\left.\left.\mathcal{O}_{\mathbb{P}^{n+1}}(-(n+2))\right|_{X} \cong \Omega_{X}^{n} \otimes \mathcal{O}_{\mathbb{P}^{n+1}}(-d)\right|_{X} \Longrightarrow \Omega_{X}^{n} \cong \mathcal{O} \tag{4}
\end{equation*}
$$

if $d=n+2$, i.e. our X is indeed Calabi-Yau.
Example. Cubic curves in \mathbb{P}^{2} correspond to elliptic curves (genus 1, isomorphic to tori), while quartic surfaces in \mathbb{P}^{3} are K 3 surfaces.

The quintic in \mathbb{P}^{4} is the world's most studied Calabi-Yau 3-fold. The cohomology of the quintic can be computed via the Lefschetz hyperplane theorem: inclusion induces $i_{*}: H_{r}(X) \xrightarrow{\sim} H_{r}\left(\mathbb{C P}^{4}\right)$ for $r<n=3$, so $H_{1}(X)=0, H_{2}(X)=$ $H_{2}\left(\mathbb{C P}^{4}\right)=\mathbb{Z}$. Thus, $h^{1,0}=0$ and $h^{2,0}=0$: by argument seen before, $h^{1,1}=1$. Moreover,

$$
\begin{equation*}
\chi(X)=e(T X) \cdot[X]=c_{3}(T X) \cdot[X] \tag{5}
\end{equation*}
$$

By working out $\left.c\left(T \mathbb{P}^{4}\right)\right|_{X}=\left.c(T X) c\left(\mathcal{O}_{\mathbb{P}^{4}}(5)\right)\right|_{X}$ (from adjunction), we have

$$
\begin{equation*}
c\left(T \mathbb{P}^{4}\right)=c\left(T \mathbb{P}^{4} \oplus \mathcal{O}\right)=c\left(\mathcal{O}(1)^{\oplus 5}\right)=(1+h)^{5} \tag{6}
\end{equation*}
$$

where $h=c_{1}(\mathcal{O}(1))$ is the generator of $H_{2}\left(\mathbb{C P}^{4}\right)$ and is Poincaré dual to the hyperplane. Restricting to X gives

$$
\begin{equation*}
\left(1+\left.h\right|_{X}\right)^{5}=1+\left.5 h\right|_{X}+\left.10 h^{2}\right|_{X}+\left.10 h^{3}\right|_{X}=\left(1+c_{1}+c_{2}+c_{3}\right)\left(1+5 h_{\mid} X\right) \tag{7}
\end{equation*}
$$

so $c_{1}=0, c_{2}=\left.10 h^{2}\right|_{X}, c_{3}=-\left.40 h^{3}\right|_{X}$. Thus,

$$
\begin{equation*}
\chi(X)=-40 h^{3} \cdot[X]=-40([\text { line }] \cap[X])=-40 \cdot 5=-200 \tag{8}
\end{equation*}
$$

We conclude that

$$
\begin{equation*}
h_{0}+h_{2}-h_{3}+h_{4}+h_{6}=1+1-\operatorname{dim} H_{3}(X)+1+1=-200 \tag{9}
\end{equation*}
$$

implying that $\operatorname{dim} H_{3}=204$. Since $h^{3,0}=h^{0,3}=1$, we obtain $h^{1,2}=h^{2,1}=101$. In fact, $h^{1,1}=1$, and we have a symplectic parameter given by the area of a generator of $H_{2}(X)$ (given by the class of a line in $H_{2}\left(\mathbb{P}^{4}\right)$). We further have $101=h^{2,1}$ complex parameters: the equation of the quintic gives $h^{0}\left(\mathcal{O}_{\mathbb{P}^{4}}(5)\right)=$ $\binom{9}{5}=126$ dimensions, from which we lose one by passing to projective space, and 24 by modding out by $\operatorname{Aut}\left(\mathbb{C P}^{4}\right)=P G L(5, \mathbb{C})$. That is, all complex deformations are still quintics.

Now we construct the mirror of X. Start with a distinguished family of quintic 3 -folds

$$
\begin{equation*}
X_{\psi}=\left\{\left(x_{0}: \cdots: x_{4}\right) \in \mathbb{P}^{4} \mid f_{\psi}=x_{0}^{5}+\cdots+x_{4}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0\right\} \tag{10}
\end{equation*}
$$

Let $G=\left\{\left(a_{0}, \ldots, a_{4}\right) \in(\mathbb{Z} / 5 \mathbb{Z})^{5} \mid \sum a_{i}=0\right\} /(\mathbb{Z} / 5 \mathbb{Z}=\{(a, a, a, a, a)\})$. Then $G \cong(\mathbb{Z} / 5 \mathbb{Z})^{3}$ acts on X_{ψ} by $\left(x_{j}\right) \mapsto\left(x_{j} \xi^{a_{j}}\right)$ where $\xi=e^{2 \pi i / 5}\left(f_{\psi}\right.$ is G-invariant because $\sum a_{j}=0 \bmod 5$, and $(1,1,1,1,1)$ acts trivially because the x_{j} are homogeneous coordinates). Furthermore, X_{ψ} is smooth for ψ generic (i.e. $\psi^{5} \neq$ 1), but X_{ψ} / G is singular: the action has fixed point $\left(x_{0}: \cdots: x_{4}\right) \in X_{\psi}$ s.t. at least two coordinates are 0 . This consists of

- 10 curves $C_{i j}$, where e.g. $C_{01}=\left\{x_{0}=x_{1}=0, x_{2}^{5}+x_{3}^{5}+x_{4}^{5}=0\right\}$ with stabilizer $\mathbb{Z} / 5=\{(a,-a, 0,0,0)\}$, so $C_{01} / G \cong \mathbb{P}^{1}$ is the line $y_{2}+y_{3}+y_{4}=0$ in $\mathbb{P}^{2}, y_{i}=x_{i}^{5}$, and
- 10 points $P_{i j k}$, e.g. $P_{0,1,2}=\left\{x_{0}=x_{1}=x_{2}=0, x_{3}^{5}+x_{4}^{5}=0\right\}$ with stabilizer $(\mathbb{Z} / 5 \mathbb{Z})^{2}$, so $P_{012} / G=\{\mathrm{pt}\}$.
The singular locus of X_{ψ} / G is the 10 curves $\overline{C_{i j}}=C_{i j} / G \cong \mathbb{P}^{1}$ with $\bar{C}_{i j}, \bar{C}_{j k}, \bar{C}_{i k}$ meeting at the point $\bar{P}_{i j k}$.

Next, let X_{ψ}^{\vee} be the resolution of singularities of $\left(X_{\psi} / G\right)$, i.e. X_{ψ}^{\vee} smooth and equipped with a map $X_{\psi}^{\vee} \xrightarrow{\pi} X_{\psi} / G$ which is an isomorphism outside $\pi^{-1}\left(\bigcup C_{i j}\right)$. The explicit construction is complicated, and one can use toric geometry to do it. One can further show that it is a crepant resolution, i.e. the canonical bundle $K_{X_{\psi}^{\vee}}=\pi^{*} K_{X_{\psi} / G}$, so the Calabi-Yau condition is preserved and X_{ψ}^{\vee} is a CalabiYau 3-fold.

Along $\bar{C}_{i j}$ (away from $\left.\bar{P}_{i j k}\right), X_{\psi} / G$ looks like $\left(\mathbb{C}^{2} /(\mathbb{Z} / 5 \mathbb{Z})\right) \times \mathbb{C},\left(x_{1}, x_{1}, x_{3}\right) \sim$ $\left(\xi^{a} x_{i}, \xi^{-a} x_{2}, x_{3}\right)$. Now $\mathbb{C}^{2} /(\mathbb{Z} / 5 \mathbb{Z}) \cong\left\{u v=w^{5}\right\} \subset \mathbb{C}^{3},\left[x_{1}, x_{2}\right] \mapsto\left[x_{1}^{5}, x_{2}^{5}, x_{1} x_{2}\right]$ is an A_{4} singularity, which can be resolved by blowing up twice, getting four exceptional divisors. Doing this for each $\bar{C}_{i j}$ gives 40 divisors. Similarly, resolving each $\bar{p}_{i j k}$ creates six divisors, for a total of 60 divisors. Thus, X_{ψ}^{\vee} contains 100 new divisors in addition to the hyperplane section, so indeed $h^{1,1}\left(X_{\psi}^{\vee}\right)=101$. Similarly, as we were only able to build a one-parameter family, $h^{2,1}\left(X_{\psi}^{\vee}\right)=1$, giving us mirror symmetric Hodge diamonds:

$$
h^{i j}(X)=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \tag{11}\\
0 & 1 & 101 & 0 \\
0 & 101 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), h^{i j}\left(X_{\psi}^{\vee}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 101 & 1 & 0 \\
0 & 1 & 101 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

We want to see how mirror symmetry predicts the Gromov-Witten invariants N_{d} (the "number of rational curves" n_{d}) of the quintic. For that, we need to understand the mirror map between the Kähler parameter $q=\exp \left(2 \pi i \int_{\ell} B+i \omega\right)$ on X and the complex parameter ψ on the mirror X_{ψ}^{\vee} (which will also give, by differentiating, an isomorphism $\left.H^{1,1}(X) \xrightarrow{\sim} H^{2,1}(X)\right)$ as well as calculations of the Yukawa coupling on $H^{2,1}\left(X_{\psi}^{\vee}\right)$.
1.1. Degenerations and the Mirror Map. Last time, we saw a basis $\left\{e_{i}\right\}$ of $H^{2}(X, \mathbb{Z})$ by elements of the Kähler cone gives coordinates on the complexified Kähler moduli space: if $[B+i \omega]=\sum t_{i} e_{i}$, the parameter $q_{i}=\exp \left(2 \pi i t_{i}\right) \in \mathbb{C}^{*}$ gives the large volume limit as $q_{i} \rightarrow 0, \operatorname{Im}\left(t_{i}\right) \rightarrow \infty$. Physics predicts that the mirror situation is degeneration of a large complex structure limit and that, near such a limit point, there are "canonical coordinates" on the complex moduli spaces making it possible to describe the mirror map.

- Degeneration: consider a family $\mathcal{X} \xrightarrow{\pi} D^{2}$ where for $t \neq 0, X_{t} \cong X$ (with varying J) and for $t=0, X_{0}$ is typically singular. For instance, consider the camily of elliptic curves $C_{t}=\left\{y^{2} z=x^{3}+x^{2} z-t z^{3}\right\} \subset \mathbb{C P}^{2}$ (in affine coordinates, $\left.C_{t}: y^{2}=x^{3}+x^{2}-t\right) . C_{t}$ is a smooth torus for $t \neq 0$, and nodal at $t=0$, obtained by pinching a loop on the torus.
- Monodromy: follow the family $\left(X_{t}\right)$ as t varies along the loop in $\pi_{1}\left(D^{2} \backslash\right.$ $\left.\{0\}, t_{0}\right)$ going around the origin. All the $X_{i} \mathrm{~s}$ are diffeomorphic, and thus induce a monodromy diffeomorphism ϕ of $X_{t_{0}}$, defined up to isotopy. This in turn induces $\phi_{*} \in \operatorname{Aut}\left(H_{n}\left(X_{t_{0}}, \mathbb{Z}\right)\right)$. In the above example, ϕ acts on $H_{1}\left(C_{t_{0}}\right)=\mathbb{Z}^{2}$ by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ (the Dehn twist): observe that $C_{t} \xrightarrow{2: 1} \mathbb{C P}^{1}=$ $\mathbb{C} \cup\{\infty\}$ by projection to x, and the branch points are ∞ plus the roots of $x^{3}+x^{2}-t$. As $t \rightarrow 0$, there is one root near -1 and two near 0 , which rotate as t goes around 0 . Letting a be the line between the two roots
near 0 and b be between the root near -1 and the closest other root, the monodromy maps a, b to $a, b+a$.

Remark. Note that this complex parameter t is ad hoc. A more natural way to describe the degeneration would be to describe C_{t} as an abstract elliptic curve $C_{t} \cong \mathbb{C} / \mathbb{Z}+\tau(t) \mathbb{Z}$. Then $\tau(t)$, or rather $\exp (2 \pi i \tau)$, is a better quantity. Equip C_{t} with a holomorphic volume form Ω_{t} normalized so $\int_{a} \Omega_{t}=1 \forall t$. Then let $\tau(t)=\int_{b} \Omega_{t}$: as t goes around the origin, $\tau(t) \rightarrow \tau(t)+1$ since $b \mapsto b+a$. Moreover, $q(t)=\exp (2 \pi i \tau(t))$ is still single-valued, and as $t \rightarrow 0$, we still have $\operatorname{Im} \tau(t) \rightarrow \infty$ and $q(t) \rightarrow 0$. In the former case, we have $\int_{a} \frac{d x}{y} \in-i \mathbb{R}^{+}$tending to 0 and $\int_{b} \frac{d x}{y} \in \mathbb{R}^{+}$tending to a constant value, so the ratio goes to $+i \infty$. In the latter case, $q(t)$ is a holomorphic function of t, and goes around 0 once when t does, i.e. it has a single root at $t=0$. Thus, q is a local coordinate for the family.

Next time, we will see an analogue of this for a family of Calabi-Yau manifolds.

