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MIRROR SYMMETRY: LECTURE 6 

DENIS AUROUX 

1. The Quintic 3-fold and Its Mirror 

The simplest Calabi-Yau’s are hypersurfaces in toric varieties, especially smooth 
hypersurfaces X in CPn+1 defined by a polynomial of degree d = n + 2, i.e. a 
section of OPn+1 (d). Smoothness implies that NX 

∼
X , defined by → OPn+1 (d)|

v �→ �vP = dP (v), so T Pn+1|X = TX ⊕ NX = TX ⊕ OPn+1 (d)|X (“adjunc
tion”). Passing to the dual and taking the determinant, we obtain 

(1) Ωn+1
Pn+1 = Ωn| |X 

∼
X ⊗OPn+1 (−d)|X 

Now: 
(2) 
T�Pn+1 ⊕ C = Hom(�, �⊥) ⊕ Hom(�, �) = Hom(�, Cn+2) = Hom(O(−1)�, Cn+2) 

implying that T Pn+1 = O(1)n+2 . Again, passing to the dual and taking the ⊕O ∼
determinant, we obtain 

(3) Ωn+1 = O(−1)⊗(n+2) = O(−(n + 2)) Pn+1 ⊗O ∼

We finally have 

(4) OPn+1 (−(n + 2)) X = Ωn
X = Ωn

X = O| ∼
X ⊗OPn+1 (−d)| ⇒ ∼

if d = n + 2, i.e. our X is indeed Calabi-Yau. 

Example. Cubic curves in P2 correspond to elliptic curves (genus 1, isomorphic 
to tori), while quartic surfaces in P3 are K3 surfaces. 

The quintic in P4 is the world’s most studied Calabi-Yau 3-fold. The coho
mology of the quintic can be computed via the Lefschetz hyperplane theorem: 
inclusion induces i (X) 

∼ 
(CP4) for r < n = 3, so H1(X) = 0, H2(X) = ∗ : Hr → Hr

H2(CP4) = Z. Thus, h1,0 = 0 and h2,0 = 0: by argument seen before, h1,1 = 1. 
Moreover, 

(5) χ(X) = e(TX) [X] = c3(TX) [X]· · 

By working out c(T P4)|X = c(TX)c(OP4 (5))|X (from adjunction), we have 

(6) c(T P4) = c(T P4 ⊕O) = c(O(1)⊕5) = (1 + h)5 
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where h = c1(O(1)) is the generator of H2(CP4) and is Poincaré dual to the 
hyperplane. Restricting to X gives 

(7) (1 + h|X )
5 = 1 + 5h|X + 10h2|X + 10h3|X = (1 + c1 + c2 + c3)(1 + 5h|X) 

so c1 = 0, c2 = 10h2|X , c3 = −40h3|X . Thus, 

(8) χ(X) = −40h3 [X] = −40([line] ∩ [X]) = −40 5 = −200· · 

We conclude that 

(9) h0 + h2 − h3 + h4 + h6 = 1 + 1 − dim H3(X) + 1 + 1 = −200 

implying that dim H3 = 204. Since h3,0 = h0,3 = 1, we obtain h1,2 = h2,1 = 101. 
In fact, h1,1 = 1, and we have a symplectic parameter given by the area of a 
generator of H2(X) (given by the class of a line in H2(P4)). We further have 
101 = h2,1 complex parameters: the equation of the quintic gives h0(OP4 (5)) = 
9 = 126 dimensions, from which we lose one by passing to projective space, and 
5 

24 by modding out by Aut(CP4) = PGL(5, C). That is, all complex deformations 
are still quintics. 

Now we construct the mirror of X. Start with a distinguished family of quintic 
3-folds 

(10) Xψ = {(x0 : : x4) ∈ P4 fψ = x0
5 + + x4

5 − 5ψx0x1x2x3x4 = 0}· · · | � 
· · · 

Let G = {(a0, . . . , a4) ∈ (Z/5Z)5 ai = 0}/(Z/5Z = {(a, a, a, a, a)}). Then 
= (Z/5Z)3 acts on Xψ by (xj ) 

|
�→ (xj ξaj ) where ξ = e2πi/5 (fψ is G-invariant G ∼ � 

because aj = 0 mod 5, and (1, 1, 1, 1, 1) acts trivially because the xj are 
homogeneous coordinates). Furthermore, Xψ is smooth for ψ generic (i.e. ψ5 =�
1), but Xψ/G is singular: the action has fixed point (x0 : : x4) ∈ Xψ s.t. at· · · 
least two coordinates are 0. This consists of 

• 10 curves Cij , where e.g. C01 = {x0 = x1 = 0, x2
5 + x3

5 + x4
5 = 0} with 

stabilizer Z/5 = {(a, −a, 0, 0, 0)}, so C01/G ∼= P1 is the line y2+y3+y4 = 0 
in P2 , yi = xi 

5, and 
• 10 points Pijk, e.g. P0,1,2 = {x0 = = x2 = 0, x3

5 + x5 = 0} withx1 4 
stabilizer (Z/5Z)2, so P012/G = {pt}. 

The singular locus of Xψ/G is the 10 curves Cij = Cij/G ∼= P1 with Cij , Cjk, Cik 

meeting at the point P ijk. 
Next, let Xψ

∨ be the resolution of singularities of (Xψ/G), i.e. Xψ
∨ smooth and 

equipped with a map Xψ
∨ π 

Xψ/G which is an isomorphism outside π−1( 
� 

→ Cij ). 
The explicit construction is complicated, and one can use toric geometry to do 
it. One can further show that it is a crepant resolution, i.e. the canonical bundle 
KX∨ = π∗KXψ /G, so the Calabi-Yau condition is preserved and Xψ

∨ is a Calabi
ψ 

Yau 3-fold. 
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Along Cij (away from P ijk), Xψ/G looks like (C2/(Z/5Z)) × C, (x1, x1, x3) ∼
(ξaxi, ξ

−ax2, x3). = {uv = w5} ⊂ C3 , [x1, x2] �→ [x1
5, x2

5, x1x2]Now C2/(Z/5Z) ∼
is an A4 singularity, which can be resolved by blowing up twice, getting four 
exceptional divisors. Doing this for each Cij gives 40 divisors. Similarly, resolving 
each pijk creates six divisors, for a total of 60 divisors. Thus, X∨ contains 100 ψ 

new divisors in addition to the hyperplane section, so indeed h1,1(Xψ
∨) = 101. 

Similarly, as we were only able to build a one-parameter family, h2,1(Xψ
∨) = 1, 

giving us mirror symmetric Hodge diamonds: ⎞⎛⎞⎛ 
1 0 0 1 1 0 0 1


(11)
 hij(X) = 
⎜⎜⎝


0 1 101 0

0 101 1 0


⎟⎟⎠
, h
ij (Xψ

∨) =

⎜⎜⎝


0 101 1 0

0 1 101 0


⎟⎟⎠

1 0 0 1 1 0 0 1 

We want to see how mirror symmetry predicts the Gromov-Witten invariants 
Nd (the “number of rational curves” nd) of the quintic. For that, we need to 
understand the mirror map between the Kähler parameter q = exp(2πi 

� B +iω) 
on X and the complex parameter ψ on the mirror Xψ

∨ (which will also give, by 
differentiating, an isomorphism H1,1(X) 

∼ 
H2,1(X)) as well as calculations of 

the Yukawa coupling on H2,1(Xψ
∨). 

→ 

1.1. Degenerations and the Mirror Map. Last time, we saw a basis {ei} of 
H2(X, Z) by elements of the Kähler cone gives coordinates on the complexified 
Kähler moduli space: if [B + iω] = tiei, the parameter qi = exp(2πiti) ∈ C∗ 

gives the large volume limit as qi 0, Im (ti) → ∞. Physics predicts that →
the mirror situation is degeneration of a large complex structure limit and that, 
near such a limit point, there are “canonical coordinates” on the complex moduli 
spaces making it possible to describe the mirror map. 

π • Degeneration: consider a family X → D2 where for t � = X (with= 0, Xt 
∼

varying J) and for t = 0, X0 is typically singular. For instance, consider 
the camily of elliptic curves Ct = {y2z = x3 + x2z − tz3} ⊂ CP2 (in affine 
coordinates, Ct : y2 = x3 + x2 − t). Ct is a smooth torus for t =� 0, and 
nodal at t = 0, obtained by pinching a loop on the torus. 

• Monodromy: follow the family (Xt) as t varies along the loop in π1(D
2 � 

{0}, t0) going around the origin. All the Xis are diffeomorphic, and thus 
induce a monodromy diffeomorphism φ of Xt0 , defined up to isotopy. This 

∗ ∈ Aut(Hn

H1(Ct0 ) = Z2 by 
1 1 

(the Dehn twist): observe that Ct 
2:1 CP1 = 

0 1 
→ 

C ∪ {∞} by projection to x, and the branch points are ∞ plus the roots 
of x3 + x2 − t. As t → 0, there is one root near −1 and two near 0, which 
rotate as t goes around 0. Letting a be the line between the two roots 

in turn induces φ
 (Xt0 , Z)). In the above example, φ acts on
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near 0 and b be between the root near −1 and the closest other root, the 
monodromy maps a, b to a, b + a. 

Remark. Note that this complex parameter t is ad hoc. A more natural way to 
describe the degeneration would be to describe Ct as an abstract elliptic curve 
Ct = C/Z + τ (t)Z. Then τ(t), or rather exp(2πiτ), is a better quantity. Equip∼ � 
Ct with a holomorphic volume form Ωt normalized so Ωt = 1 ∀ t. Then let � a 
τ (t) = 

b Ωt: as t goes around the origin, τ(t) → τ(t) + 1 since b �→ b + a. 
Moreover, q(t) = exp(2πiτ(t)) is still single-valued, and as t 0, we still have 
Im τ(t) → ∞ and q(t) 0. In the former case, we have 

a y tending� 
→ 

� 
dx
→
∈ −iR+ 

to 0 and dx ∈ R+ tending to a constant value, so the ratio goes to +i∞. In
b y 

the latter case, q(t) is a holomorphic function of t, and goes around 0 once when 
t does, i.e. it has a single root at t = 0. Thus, q is a local coordinate for the 
family. 

Next time, we will see an analogue of this for a family of Calabi-Yau manifolds. 




