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MIRROR SYMMETRY: LECTURE 3 

DENIS AUROUX 

Last time, we say that a deformation of (X, J) is given by 

1 
(1) {s ∈ Ω0,1(X, TX)|∂s + 

2
[s, s] = 0}/Diff(X) 

To first order, these are determined by Def1(X, J) = H1(X, TX), but extending 
these to higher order is obstructed by elements of H2(X, TX). In the Calabi-Yau 
case, recall that: 

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Ωn,0 
= X 
∼

OX ) with H0(X, TX) = 0 (automorphisms are discrete), deformations of X are 
unobstructed. 

Note that, if X is a Calabi-Yau manifold, we have a natural isomorphism 
TX ∼= Ωn−1 , v �→ ivΩ, so X 

= H0,1(2) H0(X, TX) = Hn−1,0(X) ∼

and similarly 

(3) H1(X, TX) = Hn−1,1, H2(X, TX) = Hn−1,2 

1. Hodge theory 

Given a Kähler metric, we have a Hodge ∗ operator and L2-adjoints 

(4) d∗ = − ∗ d∗, ∂∗ 
= − ∗ ∂∗ 

and Laplacians 

(5) Δ = dd∗ + d∗d, � = ∂∂
∗ 
+ ∂

∗
∂ 

Every (d/∂)-cohomology class contains a unique harmonic form, and one can 
show that � = 1 Δ. We obtain 

2 

Hk (X, C) ∼= Ker (Δ : Ωk(X, C) �) = Ker (� : Ωk �)dR

(6) = Ker (� : Ωp,q �) ∼ Hp,q (X)=∼
∂ 

p+q=k p+q=k 
1 
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The Hodge ∗ operator gives an isomorphism Hp,q ∼= Hn−p,n−q. Complex con
jugation gives Hp,q ∼= Hq,p, giving us a Hodge diamond 

hn,n hn−1,n	 h0,n · · · · · · 

hn,n−1 hn−1,n−1 . . 
.
.· · · . . 

(7)	 ..
. ..

. . . . ..
. ..

. 

. .	 h1,1 h0,1 . .. . · · · 

hn,0	 h1,0 h0,0 · · · · · · 
For a Calabi-Yau, we have 

Hp,0 ∼
X ) ∼	 = Hn−p,0(8) = Hn,n−p = Hn−p(X, Ωn = Hn−p(X, OX ) = H0,n−p ∼

∂ ∂ 

Specifically, for a Calabi-Yau 3-fold with h1,0 = 0, we have a reduced Hodge 
diamond 

1 0 0 1 

0 h1,1 h2,1 0 

(9) 

0 h2,1 h1,1 0 

1 0 0 1 

Mirror symmetry says that there is another Calabi-Yau manifold whose Hodge 
diamond is the mirror image (or 90 degree rotation) of this one. 

There is another interpretation of the Kodaira-Spencer map H1(X, TX) ∼= 
Hn−1,1 . For X = (X, Jt)t∈S a family of complex deformations of (X, J), c1(KX ) = 
−c1(TX) = 0 implies that Ωn = under the assumption H1(X) = 0,(X,Jt) 

∼ OX 

so we don’t have to worry about deforming outside the Calabi-Yau case. Then 
∃[Ωt] ∈ Hn,0(X) ⊂ Hn(X, C). How does this depend on t? Given ∂ ∈ T0S, ∂t 

Jt	 ∂t ∂Ω t 
∈ 

Ωn,0 ⊕ Ωn−1,1 by Griffiths transversality: 

∂ 
(10)	 αt ∈ Ωp,q = αt ∈ Ωp,q + Ωp−1,q+1 + Ωp+1,q−1 

Jt 
⇒ 

∂t 
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Since ∂Ωt | is d-closed (dΩt = 0), (∂Ωt |t=0)
(n−1,1) is ∂-closed, while

∂t t=0 ∂t 

(11) ∂( 
∂

∂t 
Ωt |t=0)

(n−1,1) + ∂( 
∂

∂t 
Ωt |t=0)

(n−1,1) = 0 

Thus, ∃[(∂Ωt |t=0)
(n−1,1)] ∈ Hn−1,1(X).

∂t

For fixed Ω0, this is independent of the choice of Ωt. If we rescale f(t)Ωt,


∂ ∂f ∂Ωt(12) (f(t)Ωt) = Ωt + f(t)
∂t ∂t ∂t 

Taking t 0, the former term is (n, 0), while for the latter, f(0) scales linearly 
with Ω0 . 

→ 

(13) Hn−1,1(X) = H1(X, Ωn−1) ∼= H1(X, TX)X 

and the two maps T0S → Hn−1,1(X), H1(X, TX) agree. Hence, for θ ∈ H1(X, TX) 
a first-order deformation of complex structure, θ Ω ∈ H1(X, Ωn ⊗ TX) = · X 

Hn−1,1(X) and (the Gauss-Manin connection) [�θΩ](n−1,1) ∈ Hn−1,1(X) are the 
same. We can iterate this to the third-order derivative: on a Calabi-Yau three
fold, we have 

(14) �θ1, θ2, θ3� = Ω ∧ (θ1 · θ2 · θ3 · Ω) = Ω ∧ (�θ1 �θ2 �θ3 Ω) 
X X 

where the latter wedge is of a (3, 0) and a (0, 3) form. 

2. Pseudoholomorphic curves 

(reference: McDuff-Salamon) Let (X2n, ω) be a symplectic manifold, J a com
patible almost-complex structure, ω( , J ) the associated Riemannian metric.· ·
Furthermore, let (Σ, j) be a Riemann surface of genus g, z1, . . . , zk ∈ Σ market 
points. There is a well-defined moduli space Mg,k = {(Σ, j, z1, . . . , zk)} modulo 
biholomorphisms of complex dimension 3g − 3 + k (note that M0,3 = {pt}). 

Definition 1. u : Σ X is a J-holomorphic map if J du = du J , i.e. 
1 

→ ◦ ◦
∂J u = (du + Jduj) = 0. For β ∈ H2(X, Z), we obtain an associated moduli

2 
space 

(15) Mg,k(X, J, β) = {(Σ, j, z1, . . . , zk), u : Σ → X|u∗[Σ] = β, ∂J u = 0}/ ∼ 

where ∼ is the equivalence given by φ below. 

Σ, z1, . . . , zk
u ��

�� X 

(16) φ =∼
�� u� 

Σ�, z1
� , . . . , zk

�

This space is the zero set of the section ∂J of E → Map(Σ, X)β ×Mg,k, where E 
is the (Banach) bundle defined by Eu = W r,p(Σ, Ω0,1 ⊗ u∗TX).Σ 
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We can define a linearized operator 

D∂ : W r+1,p(Σ, u∗TX) × T Mg,k → W r,p(Σ, Ω0,1 ⊗ U∗TX)Σ 

1 
(17) D∂ (v, j�) = 

2
(�v + J�vj + (�vJ) · du · j + J · du · j�) 

1 1 
= ∂v + 

2
(�vJ)du · j +

2 
J · du · j� 

This operator is Fredholm, with real index 

(18) indexRD∂ := 2d = 2�c1(TX), β� + n(2 − 2g) + (6g − 6 + 2k) 

One can ask about transversality, i.e. whether we can ensure that D∂ is onto at 
every solution. We say that u is regular if this is true at u: if so, Mg,k(X, J, β) 
is smooth of dimension 2d. 

Definition 2. We say that a map Σ X is simple (or “somewhere injective”) →
if ∃z ∈ Σ s.t. du(z) = 0 � and u−1(u(z)) = {z}. 

Note that otherwise u will factor through a covering Σ → Σ�. We set M∗ 
g,k(X, J, β) 

to be the moduli space of such simple curves. 

Theorem 2. Let J (X, ω) be the set of compatible almost-complex structures on 
X: then 
(19) 
J reg(X, β) = {J ∈ J (X, ω)| every simple J-holomorphic curve in class β is regular} 

is a Baire subset in J (X, ω), and for J ∈ J reg(X, β), M∗ (X, J, β) is smooth g,k

(as an orbifold, if Mg,k is an orbifold) of real dimension 2d and carries a natural 
orientation. 

The main idea here is to view ∂J u = 0 as an equation on Map(Σ, X) ×Mg,k × 
J (X, ω) � (u, j, J). Then D∂ is easily seen to be surjective for simple maps. We 
have a “universal moduli space” ˜ → J (X, ω) given by a Fredholm map, MM

∗ πJ 

and by Sard-Smale, a generic J is a regular value of πJ . This universal moduli �� 
space is M∗ = (X, J, β). For such J , M∗ (X, J, β) is smooth of g,k

dimension 2d, and the tangent space is Ker (D∂ ). For the orientability, we need 
an orientation on Ker (D∂ ). If J is integrable, the D∂ is C-linear (D∂ = ∂), so 
Ker is a C-vector space. Moreover, ∀J0, J1 ∈ J reg(X, β), ∃ a (dense set of choices 

J∈J (X,ω) M∗ 
g,k

�� 
of) path {Jt}t∈[0,1] s.t. t∈[0,1] M∗ (X, Jt, β) is a smooth oriented cobordism. We g,k

still need compactness. 




