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MIRROR SYMMETRY: LECTURE 2 

DENIS AUROUX 

Reference for today: M. Gross, D. Huybrechts, D. Joyce, “Calabi-Yau Mani
folds and Related Geometries”, Chapter 14. 

1. Deformations of Complex Structures 

An (almost) complex structure (X, J) splits the complexified tangent and 
(wedge powers of) cotangent bundles as 

1 
TX ⊗ C = TX1,0 ⊕ TX0,1 , v 0,1 = (v + iJv)

2
T ∗X ⊗ C = T ∗X1,0 ⊕ T ∗X0,1, T ∗X1,0 = Span(dzi), T ∗X0,1 = Span(dzi)(1) 

k p,q

T ∗X ⊗ C = T ∗X = Ωp,q(X)

p+q=k


If J is almost complex, these are C-vector bundles. J is integrable (i.e. a complex 
structure) 

(2) 
[T 1,0, T 1,0] ⊂ T 1,0 ⇔ d = ∂ + ∂ maps Ωp,q → Ωp+1,q ⊕ Ωp,q+1 

2 
∂ = 0 on diff. forms ⇔ 

We obtain a Dolbeault cohomology for holomorphic vector bundles E: 

Cq ∂ ∂ 

(3) 
(X,E) = {C∞(X,E) → Ω0,1(X,E) → Ω0,2(X,E) → · · · } 

∂ 

H
∂

q(X,E) = ker∂/im∂ 

Deforming J to a “nearby” J � gives 

(4) Ω1,0 ⊆ T ∗C = Ω1,0 ⊕ Ω0,1 
J � J J 

is a graph of a linear map (−s) : Ω1
J
,0 → Ω0

J
,1 . J � is determined by Ω1

J
,
� 
0 (acted 

on by i) and Ω0,1 (acted on by i�). s is a section of (Ω1,0)∗ ⊗ Ω0,1 = T1,0 ⊗ Ω0,1 
J � J J j J 

i.e. a (0, 1)J -form with values in TJ 
1,0X. If z1, . . . , zn are local holomorphic 

1 
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coordinates for J , then s = sij 
∂ ⊗ dzj . A basis of (1, 0)-forms for J � is given 

∂zi� � ∂ 
by dzi − sijdzj and (0, 1)-vectors for J � by 

∂
∂
zk 

+ s�k . 
∂z� � j �� � � � �� �


s(dzi) s(∂/∂zk)


We can use this to test the integrability of J �. The Dolbeault complex ( q ΩX 
0,q⊗ 

TX1,0 , ∂) (∂ acts “on forms”) carries a Lie bracket 

(5) [α ⊗ v, α� ⊗ v�] = (α ∧ α�) ⊗ [v, v�] 

giving it the structure of a differential graded Lie algebra. 

Proposition 1. J � is integrable ∂s + 
2
1 [s, s] = 0.⇔ 

Proof. We want to check that the bracket of two 0, 1 tangent vectors is still 0, 1, 
i.e. that 

∂ � ∂ ∂ � ∂ 
(6) [ + s�k , + s�k ] ∈ TXJ

0,
� 
1 

∂zk ∂z� ∂zk ∂z� 

Evaluating this bracket gives � � 
∂s�j ∂s�i 

� 
∂ � ∂s�j ∂s�i ∂ 

(7) ∂zi 
− 
∂zj ∂z� 

+ (ski 
∂zk 

− skj 
∂zk 

)
∂z�

� k,� 

We want this to be 0, i.e. for all i, j, �, 

∂s�j ∂s�i 
� ∂s�j ∂s�i

0 = 
∂zi 

− 
∂zj 

+ (ski 
∂zk 

− skj 
∂zk 

) 
(8) � �� � k � �� � 

coefficient of ∂ in 
2
1 

∂z� 
⊗(dzi∧dzj ) in (∂s) [s,s] 

We leave the rest as an exercise. � 

We would now like to use this to understand the moduli space of complex 
structures. Define 

(9) MCX (X) = {J integrable complex structures on X}/Diff(X) 

(or, assuming that Aut(X, J) is discrete, we want that near J , ∃ a universal family 
X → U ⊂MCX (complex manifolds, holomorphic fibers ∼= X) s.t. any family of 
integrable complex structures X � → S induces a map S → U s.t. X pulls back 
to X �). We have an action of the diffeomorphisms of X: for φ ∈ Diff(X) close to 
id, 

dφ : TX ⊗ C 
∼ 
φ∗TX ⊗ C→ 

(10) ∂φ : TX1,0 φ∗TX1,0 → 

∂φ : TX0,1 φ∗TX1,0 → 
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so 

φ∗dzi = dzi ◦ dφ = dzi ◦ ∂φ + dzi ◦ ∂φ 

(11) = (dzi ◦ ∂φ)(id + (∂φ)−1 ∂φ)� �� � 
· 

(1,0) for J 

Deformation by s ∈ Ω0,1(X,TX1,0) gives Ω1
J
,
� 
0 = {α − s(α)|α ∈ Ω1,0} (the graph 

of −s): taking s = −(∂φ)−1 · ∂φ : TX0,1 → φ∗TX1,0 → TX1,0 gives the desired 
element of Ω0,1(TX1,0). 

1.1. First-order infinitesimal deformations. Given a family J(t), J(0) = J 
gives s(t) ∈ Ω0,1(X,TX1,0), s(0) = 00. By the above, this should satisfy 

1 
(12) ∂s(t) + [s(t), s(t)] = 0 

2
dsIn particular, s1 = 
dt t=0 solves ∂s1 = 0. We obtain an infinitesimal action of|

dφDiff(X): for (φt), φ0 = id , 
dt |t=0 = v a vector field, 

d d 
(13) 

dt
|t=0(−(∂φt)

−1 ◦ ∂φt) = −
dt
|t=0(∂φt) = −∂v 

This implies that first-order deformations are given as 

Ker (∂ : Ω0,1(TX1,0) Ω2,0(TX1,0))
(14) Def1(X, J) = 

→ 

Im(∂ : C∞(TX1,0) Ω0,1(TX1,0))→ 

We can write this more compactly using Dolbeault cohomology, namely H
∂ 
1(X,TX1,0). 

Furthermore, given a family 

X ��

�� ��

X

∗ �� S 

(15) 

of deformations of (X, J) parameterized by S, we get a map T∗S → H1(X,TX1,0) 
called the Kodaira Spencer map 

Remark. A complex manifold (X, J) is a union of complex charts Ui with biholo

morphisms φij : Uij 
∼ 
Uji s.t. φij = φ−1 and φij φjk Deformations→ ji = φik on Uijk. 

of (X, J) come from deforming the gluing maps φij among the space of holomor
phic maps. To first order, this is given by holomorphic vector fields vij on Ui ∩Uj 

s.t. vij = −vji and vij + vjk = vik on Uijk. Cech 1-cocycleThis is precisely the ˇ

conditions in the sheaf of holomorphic tangent vector fields. Modding out by 
holomorphic functions ψi : Ui → Ui (which act by φij �→ ψj φij ψ

−1) is precisely
∼ 

i 

modding by the ˇ H1(X,TX1,0).Cech coboundaries. Thus, Def1(X, J) = ˇ
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1.2. Obstructions to Deformation. Given a first-order deformation s1, one 
can ask if one can find an actual deformation s(t) = s1t + O(t2) (or even a formal 
deformation, i.e. non-convergent power series). Expand 

(16) s(t) = s1t + s2t
2 + · · · ∈ Ω0,1(X,TX1,0) 

Then the condition ∂s(t)+ 1
2 [s(t), s(t)] = 0 implies that ∂s1 = 0, ∂s2 + 1

2 [s1, s1] = 
0, ∂s3 + [s1, s2] = 0, Now, we need [s1, s1] ∈ im (∂) ⊂ Ω0,2(TX1,0). We know · · · . 
that [s1, s1] ∈ Ker (∂). Thus, the primary obstruction to deforming is the class 
of [s1, s1] in H2(X,TX1,0). If it is zero, then there is an s2 s.t. ∂s2 + 1

2 [s1, s1] = 0, 
and the next obstructure is the class of [s1, s2] ∈ H2(X,TX1,0). We are basically 
attempting to apply by brute force the implicit function theorem. 

If it happens that H2(X,TX) = 0, then the deformations are unobstructed 
and the moduli space of complex structures is locally a smooth orbifold (not 
a manifold, because we may have to quotient by automorphisms) with tangent 
space H1(X,TX1,0). For Calabi-Yau manifolds, this will not be true: however, 
we still have 

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Ωn,0 
= X 
∼

OX ) with H0(X,TX) = 0 (automorphisms are discrete), deformations of X are 
unobstructed and, assuming Aut(X, J) = {1}, MCX is locally a smooth manifold 
with T MCX = H1(X,TX). 

Theorem 2 (Griffiths Transversality). For a family (X, Jt), αt ∈ Ωp,q(X, Jt) = 
d

t=0αt ∈ Ωp,q + Ωp+1,q−1 + Ωp−1,q+1 
⇒ 

.
dt |

Proof. Jt is given by s(t) ∈ Ω0,1(TX1,0), s(0) = 0. In local coordinates, we have 
T ∗X1,0 = Span{dz(t) 

= dzi − sij (t)dzj }Jt i 

= (17) αt αIJ (t)dzi
(

1 

t) ∧ · · · ∧ dzi
(

p 

t) ∧ dz(
j
t

1 

) ∧ · · · ∧ dz(
j
t

q 

) 

I,J ||I|=p,|J |=q 

dTaking 
dt t=0, the result follows from the product rule. We mostly get (p, q) terms |

d (t)
and a few (p + 1, q − 1), (p − 1, q + 1) forms (the latter from 

dt |t=0(dzik 
). � 




