SYMPLECTIC GEOMETRY, LECTURE 13

Prof. Denis Auroux

1. Integrability of Almost-Complex Structures

Recall the following:
Definition 1. The Nijenhuis tensor is the form

$$
\begin{equation*}
N_{J}(u, v)=[J u, J v]-J[u, J v]-J[J u, v]-[u, v] \tag{1}
\end{equation*}
$$

Proposition 1. $N(u, v)=-8 \operatorname{Re}\left(\left[u^{1,0}, v^{1,0}\right]^{0,1}\right)$.
Proof. $\left[u^{1,0}, v^{1,0}\right]=\frac{1}{4}[u-i J u, v-i J v]=\frac{1}{4}([u, v]-i[J u, v]-i[u, J v]-[J u, J v])$. Taking the real part of the $(0,1)$ component gives the desired expression.
Corollary 1. $N=0$ globally $\Leftrightarrow\left[T^{1,0}, T^{1,0}\right] \subset T^{1,0}$, i.e. the Lie bracket preserves the splitting $T^{1,0} \oplus T^{0,1}$.
Proposition 2. N is a tensor, i.e. in depends only on the values of u, v.
Note also that N is by definition skew-symmetric an J-antilinear. In fact, N can be taken as a complex map $\bigwedge^{2}(T M, J) \rightarrow(T M,-J)$. Thus, if $\operatorname{dim}_{\mathbb{R}} M=2, N=0$, since $N(u, J u)=-J N(u, u)=0$.
Definition 2. An almost-complex structure J is a complex structure if it is integrable, i.e. if \exists local holomorphic coordinates s.t. $(M, J) \cong\left(\mathbb{C}^{n}, i\right)$ locally.
Proposition 3. If J is a complex structure, $N=0$.
Proof. This follows from the fact that, on $T^{1,0} \mathbb{C}^{n},\left[\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right]=0$.
Theorem 1 (Newlander-Nirenberg). $N \equiv 0 \Leftrightarrow J$ is integrable.
Proof. Sketch: producing holomorphic coordinates is equivalent to giving a frame on the tangent bundle of the form $\left\{\frac{\partial}{\partial z_{i}}\right\}$, which is the same as finding a basis $\left\{e_{i}\right\}$ of $T^{1,0}$ s.t. $\left[e_{i}, e_{j}\right]=0$.

This does not make the problem of determining whether a manifold has some complex structure trivial: for instance, it is currently unknown whether S^{6} has an integrable complex structure.

We can extend our tensor to differential forms to obtain alternate ways to determine integrability.
Proposition 4. The dual map $N^{*}: \bigwedge^{0,1} T^{*} M \rightarrow \bigwedge^{2,0} T^{*} M$ is precisely the map $N^{*} \alpha=(d \alpha)^{(2,0)}$.
Proof. For $\alpha \in \Omega^{0,1}$, we have a decomposition $d \alpha=\partial \alpha+\bar{\partial} \alpha+(d \alpha)^{(2,0)} \in \Omega^{1,1} \oplus \Omega^{0,2} \oplus \Omega^{2,0}$. Moreover,

$$
\begin{align*}
d \alpha^{(2,0)}(u, v) & =d \alpha^{(2,0)}\left(u^{1,0}, v^{1,0}\right)=d \alpha\left(u^{1,0}, v^{1,0}\right) \\
& =u^{1,0} \cdot \alpha\left(v^{1,0}\right)-v^{1,0} \cdot \alpha\left(u^{1,0}\right)-\alpha\left(\left[u^{1,0}, v^{1,0}\right]\right) \tag{2}
\end{align*}
$$

The first two terms of the latter expression vanish, implying that $d \alpha\left(u^{1,0}, v^{1,0}\right)=8 \alpha(N(u, v))$.
Similarly, for $\beta \in \Omega^{1,0}$, we have $\bar{N}^{*} \beta=(d \beta)^{(0,2)}$. Note that, for f a function, $d f=\partial f+\bar{\partial} f$, so

$$
\begin{equation*}
d d f=d(\partial f)+d(\bar{\partial} f)=\left(\partial \partial f+\bar{\partial} \partial f+\bar{N}^{*} \partial f\right)+\left(N^{*} \bar{\partial} f+\partial \bar{\partial} f+\overline{\partial \partial} f\right) \tag{3}
\end{equation*}
$$

so $\bar{\partial}^{2} f=-\bar{N}^{*} \partial f$. If f is holomorphic, $\bar{\partial} f=0 \Longrightarrow \bar{\partial} f=0 \Longrightarrow \bar{N}^{*} \partial f=0$. Therefore, if there exist $z_{i}: M \rightarrow \mathbb{C}$ holomorphic functions s.t. ∂z_{i} generate $T^{*} M^{1,0}$, then $N=0$ and $\bar{\partial}^{2}=0$.
Theorem 2 (Newlander-Nirenberg). J is integrable $\Leftrightarrow N \equiv 0 \Leftrightarrow\left[T^{1,0}, T^{1,0}\right] \subset T^{1,0} \Leftrightarrow d=\partial+\bar{\partial} \Leftrightarrow \bar{\partial}^{2}=0$ on forms.

Finally, we return to the case of M a symplectic manifold with compatible a.c.s. J and induced metric g. Denote by ∇ the Levi-Civita connection given by g. In this case, J is integrable $\Leftrightarrow \nabla(J v)=J \nabla(v) \Leftrightarrow \nabla J=$ $0 \Leftrightarrow \nabla\left(T^{1,0}\right) \subset T^{1,0}$.

Definition 3. A symplectic manifold (M, ω, J) is Kähler if J is integrable and compatible with ω. That is, (M, J) is a complex manifold, ω is a closed, positive, real, nondegenerate $(1,1)$-form (i.e. $\omega(J u, J u)=\omega(u, v)$).

Example. $\left(\mathbb{C}^{n}, \omega_{0}, i\right)$ is Kähler.
Example. Any Riemann surface (oriented with area form) is Kähler.
Example. The complex projective space $\mathbb{C} P^{n}=\mathbb{C}^{n+1} \backslash\{0\} /\left(z_{0}, \ldots, z_{n}\right) \sim\left(\lambda z_{0}, \ldots, \lambda z_{n}\right)$ is Kähler. The points are given as homogeneous coordinates $\left[z_{0}: \cdots: z_{n}\right]$, with coordinate charts

$$
\begin{equation*}
\mathbb{C}^{n} \cong U_{i}=\left\{z_{i} \neq 0\right\}=\left\{\left[\frac{z_{0}}{z_{i}}: \cdots: 1: \cdots \frac{z_{n}}{z_{i}}\right]\right\} \tag{4}
\end{equation*}
$$

and coordinate changes (WLOG on $U_{0} \cap U_{1}$) given by $\left[1: z_{1}: \cdots: z_{n}\right] \mapsto\left[\frac{1}{z_{1}}: 1: \frac{z_{2}}{z_{1}}: \cdots: \frac{z_{n}}{z_{1}}\right]$. Note that $\mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\} \cong S^{2}$: more generally,

$$
\begin{equation*}
\mathbb{C} P^{n}=\left\{\left[1: z_{1}: \cdots z_{n}\right]\right\} \sqcup\left\{\left[0: z_{1}: \cdots z_{n}\right] \mid z_{i} \neq 0 \text { for some } i\right\}=\mathbb{C}^{n} \cup \mathbb{C} P^{n-1} \tag{5}
\end{equation*}
$$

so we can construct the spaces inductively from cells in dimension $2 i, i \in\{0, \ldots, n\}$.
We claim that $\mathbb{C} P^{n}$ has a symplectic structure compatible with the complex structure given above.

