SYMPLECTIC GEOMETRY, LECTURE 11

Prof. Denis Auroux

1. Chern Classes

Let $E \rightarrow M$ be a complex vector bundle, ∇ a connection on E. Recall that we obtain the Chern classes of E via $c(E)=\sum c_{i}(E)=\operatorname{det}\left(I+\frac{i}{2 \pi} R^{\nabla}\right)$.
Proposition 1. M compact and oriented $\Longrightarrow c_{r}(E)=e(E) \in H^{2 r}(M, \mathbb{Z})$.
Let s be a section transverse to the zero section. Let $Z=s^{-1}(0)$ be its zero set: then

$$
\begin{equation*}
[Z] \in H_{2 n-2 r}(M) \Longrightarrow P D([Z]) \in H^{2 r}(M) \tag{1}
\end{equation*}
$$

is the Euler class of E.
1.1. Chern Classes of Line bundles. We now restrict to understanding the first Chern class of a line bundle. If M is compact, this is precisely the Euler class. Now, consider a closed, oriented surface Σ : any section vanishes at finitely many points, giving us a well-defined degree by counting these points (with sign). Moreover, we have that $c_{1}(L) \in H^{2}(L, \mathbb{Z}) \cong \mathbb{Z}$ is precisely the class s.t. $c_{1}(L)[\Sigma]=\operatorname{deg} L$. Cut Σ into two parts $U \cup D^{2}$, where $U=\bigvee S^{1}$ holds all the non-trivial loops. Any complex bundle over S^{1} is trivial, so L is trivial over both U and D^{2}. To obtain L from $\left.L\right|_{U}$ and $L_{D^{2}}$, we need to identify $\left.L\right|_{\partial U} \cong \mathbb{C} \times\left. S^{1} \rightarrow L\right|_{\partial D^{2}} \cong \mathbb{C} \times S^{1}$. This corresponds to a map $S^{1} \rightarrow \mathbb{C}^{*}$ modulo homotopy, i.e. an element of $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$. This is again $\operatorname{deg} L$.

Remark. Alternatively, since L is trivial over D^{2} and U, we have a non-vanishing section s of $\left.L\right|_{U}$. The Chern class of L measures why this section cannot be extended to all of Σ. Specifically, the Chern class corresponds to the boundary map $\frac{s}{|s|}: \partial D^{2}=S^{1} \rightarrow S^{1}$.
1.2. Properties of Chern Classes. Let $c(E)=\sum c_{i}(E)$ denote the total Chern class of E (with $c_{0}(E)=1$).
(1) $c(E \oplus F)=c(E) \cup c(F)$.
(2) For $f: X \rightarrow M$ a smooth map giving a commutative square

where $f^{*} E=\{(x, v) \in X \times E \mid f(x)=\pi(v)\}$, we have $c\left(f^{*}(E)\right)=f^{*}(c(E))$. By the splitting principle, for any $E \rightarrow M, \exists f: X \rightarrow M$ s.t. in the above square, f^{*} is injective on cohomology, and $f^{*} E$ splits as a sum of line bundles.
One can define the Chern classes via these properties along with the definition of the first Chern class of a line bundle. Our definition of Chern classes (i.e. via the curvature R^{∇}) also satisfies these properties.
(1) Given bundles E, F with connections ∇^{E}, ∇^{F}, the connection on the direct sum is precisely $\nabla^{E \oplus F}(s, t)=$ $\left(\nabla^{E}(s), \nabla^{F}(t)\right)$, implying that the curvature is $R^{E \oplus F}=R^{E} \oplus R^{F}$ as desired.
(2) Note that, if s is a local section of E near $f(x)$, then $s \circ f$ is a local section of $f^{*} E$ near x. By the definition of the pullback connection, $\nabla^{f^{*} E}\left(f^{*}(s)\right)=f^{*}\left(\nabla^{E} s\right)$. Via the definition of curvature, we see that $f^{*}\left(R^{\nabla}\right)=R^{f^{*} \nabla}$ as well, implying the desired pullback property.

Remark. $c_{1}(L) \in H^{2}(M, \mathbb{Z})$ completely classifies \mathbb{C}-line bundles. Moreover, it defines a group isomorphism between the set of line bundles over M under \otimes with $H^{2}(M, \mathbb{Z})$. To see this, recall that a line bundle is precisely
a collection of local trivializations $\left\{f_{\alpha}:\left.L\right|_{U_{\alpha}} \xlongequal{\cong} U_{\alpha} \times \mathbb{C}\right\}$ with attaching maps $g_{\alpha, \beta} \in C^{\infty}\left(U_{\alpha} \cap U_{\beta}, \mathbb{C}^{*}\right)$ satisfying the cocycle condition

$$
\begin{equation*}
g_{\alpha, \beta} g_{\beta, \gamma} g_{\gamma \alpha}=1 \tag{3}
\end{equation*}
$$

on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. This corresponds precisely with the Cech cohomology on M, where $\left\{g_{\alpha, \beta}\right\}$ is a 1-cocycle. In this description, c_{1} is the connecting map in the long exact sequence

$$
\begin{equation*}
\cdots \rightarrow 0=H^{1}(M, \underline{\mathbb{C}}) \rightarrow H^{1}\left(M, \underline{\mathbb{C}}^{*}\right) \rightarrow^{c_{1}} H^{2}(M, \mathbb{Z}) \rightarrow H^{2}(M, \underline{\mathbb{C}})=0 \rightarrow \cdots \tag{4}
\end{equation*}
$$

associated to the short exact sequence of sheaves $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{C} \xrightarrow{\exp } \underline{\mathbb{C}}^{*} \rightarrow 0$ where $\mathbb{C}, \mathbb{C}^{*}$ are the sheaves of \mathbb{C}^{∞} functions with values in $\mathbb{C}, \mathbb{C}^{*}$. One can also see directly the fact that $c_{1}\left(L \otimes L^{\prime}\right)=c_{1}(L)+c_{1}\left(L^{\prime}\right)$ using the definition of the tensor product connection $\nabla^{L \otimes L^{\prime}}=\nabla^{L} \otimes \mathrm{id}+\mathrm{id} \otimes \nabla^{L^{\prime}}$.

Now, for (M, ω) a symplectic manifold, J a compatible almost-complex structure, $(T M, J)$ is a complex vector bundle, with $c_{j}(T M) \in H^{2 j}(M, \mathbb{Z})$. Since the RHS is discrete, we get an invariant of the almost-complex structure up to deformation, and since the space of compatible J 's is connected, the complex isomorphism class of $(T M, J)$ is uniquely determined. Explicitly, if J_{t} is a family of complex structures on E, the map $\phi: v \mapsto \frac{1}{2}\left(v-J_{t} J_{t_{0}} v\right)$ is a complex isomorphism from $\left(E, J_{t_{0}}\right)$ to $\left(E, J_{t}\right)$ since

$$
\begin{equation*}
\phi\left(J_{t_{0}} v\right)=\frac{1}{2}\left(J_{t_{0}} v+J_{t} v\right)=J_{t}\left(\frac{1}{2}\left(v-J_{t} J_{t_{0}} v\right)\right)=J_{t} \phi(v) \tag{5}
\end{equation*}
$$

Thus, $c_{j}(T M, J)$ is independent of the choice of almost-complex structure (it is even an invariant of the deformation class of $M)$: for instance, $c_{n}(T M) \in H^{2 n}(M, \mathbb{Z}) \cong \mathbb{Z}$ is an invariant of the manifold (the Euler characteristic).
Remark. For $1 \leq j \leq n-1, c_{j}$ does depend on the choice of symplectic structure, however: there exists a 4-manifold M with symplectic forms ω_{1}, ω_{2} s.t. $c_{1}\left(T M, \omega_{1}\right) \neq c_{1}\left(T M, \omega_{2}\right)$.

