Lecture 7.

7.2 The tangent bundle

Let M be a smooth manifold. We will associate to M a bundle $T M$. We will do this concretely but there are many ways of doing this. You should read about them all!!!

We know what a tangent vector in \mathbb{R}^{n}.
Definition 7.3. A tangent vector to M at x is the equivalence class of all pairs $v,(U, \phi)$ where (U, ϕ) is a chart about x and v is a tangent vector to \mathbb{R}^{n} at $\phi(x)$. We say that $v^{\prime},\left(U^{\prime}, \phi^{\prime}\right)$ is equivalent to $v,(U, \phi)$ if

$$
v^{\prime}=d_{\phi(x)}\left(\phi^{\prime} \circ \phi^{-1}\right)(v)
$$

The tangent bundle $T M$ to M is the set of all tangent vectors.
In other words the tangent bundle to M is bundle determined by choosing an atlas $\left\{\left(U_{\alpha}, \phi_{\alpha}\right) \mid \alpha \in X\right\}$ and taking as transition functions

$$
g_{\alpha \beta}(x)=d_{\phi_{\beta}(x)}\left(\phi_{\alpha} \circ \phi_{\beta}^{-1}\right)(v) .
$$

Given a chart (U, ϕ) we get coordinates $x^{1}, x^{2}, \ldots, x^{n}$ on U. A typical tangent X vector is written as

$$
X=a^{1} \frac{\partial}{\partial x^{1}}+a^{2} \frac{\partial}{\partial x^{2}}+\ldots a^{n} \frac{\partial}{\partial x^{n}}
$$

reminding us that we can differentiate function using tangent vectors. Given $f: M \rightarrow \mathbb{R}$ and a tangent vector at $x i n M$ we define

$$
\begin{equation*}
X f(x)=a^{1} \frac{\partial f \circ \phi^{-1}}{\partial x^{1}}(\phi(x))+a^{2} \frac{\partial f \circ \phi^{-1}}{\partial x^{2}}(\phi(x))+\ldots+a^{n} \frac{\partial f \circ \phi^{-1}}{\partial x^{n}}(\phi(x)) . \tag{2}
\end{equation*}
$$

in other word the usual directional derivative of $f \circ \phi^{-1}$.
Given a smooth map $f: M \rightarrow N$ we can define the differential of f as a map

$$
D f: T M \rightarrow T N
$$

Given x in M and $X=(v,(U, \phi))$ a tangent vector and a chart (V, ψ) about $f(x)$ set $D_{x} f(X)$ to be the equivalence class of the vector

$$
D_{\phi(x)}\left(\psi \circ f \circ \phi^{-1}\right)(v)
$$

and the chart, (V, ψ) or in terms of coordinates if we write

$$
\psi \circ f \circ \phi^{-1}\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\left(f^{1}\left(x^{1}, \ldots, x^{n}\right), \ldots, f^{m}\left(x^{1}, \ldots, x^{n}\right)\right)
$$

then the matrix of $D f$ is

$$
\left[\frac{\partial f^{i}}{\partial x^{j}}\right]
$$

